13. On Deformations of Holomorphic Maps

By Eiji HORIKAWA University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Feb. 12, 1972)

O. Introduction. The modern deformation theory has begun with the splendid work of Kodaira-Spencer [1] followed by [2], [3]. Moreover Kodaira has investigated families of submanifolds of a fixed compact complex manifold in [4]. The next natural problem is to investigate "deformations of holomorphic maps". I intend to give here a statement of fundamental results and some applications. Details will be published elsewhere.

1. Notations and conventions. We denote by X, Y, Z compact complex manifolds and by $p: \mathcal{X} \to M, q: \mathcal{Y} \to N, \pi: \mathcal{Z} \to S$ complex analytic families of compact complex manifolds (see [1] for the definition).

We say that two holomorphic maps $f: X \to Y$ and $f': X' \to Y$ are equivalent if there exists a complex analytic isomorphism $h: X \to X'$ such that $f = f' \circ h$.

2. Deformations of non-degenerate holomorphic maps. By a family of holomorphic maps into a fixed compact complex manifold Y, we mean a quadruplet $(\mathcal{X}, \Phi, p, M)$ of complex analytic family $p: \mathcal{X} \to M$ and a holomorphic map $\Phi: \mathcal{X} \to \mathcal{Y} = Y \times M$ over M in the sense that $p = pr_2 \circ \Phi$.

We define the concept of completeness of a family of holomorphic maps into Y as in the theory of deformations of compact complex manifolds [1].

Let $(\mathcal{X}, \Phi, p, M)$ be a family of holomorphic maps into $Y, 0 \in M$, $X = X_0 = p^{-1}(0)$ and let $f = \Phi_0: X \to Y$ be the induced holomorphic map. Then we have an exact sequence of sheaves on X:

$$\Theta_X \xrightarrow{F} f^* \Theta_Y \xrightarrow{P} \mathcal{I} \longrightarrow 0$$

where θ denotes the sheaf of germs of holomorphic vector fields, $\mathcal{T} = \mathcal{T}_{X/Y}$ is the cokernel of the canonical homomorphism F and P is the natural projection.

For simplicity we assume that f is non-degenerate (i.e. rank_z $df = \dim X$ for some point $z \in X$). Then the homomorphism F is injective. If f is an embedding, \mathcal{T} is nothing but the normal bundle \mathcal{N} .

Now we define a characteristic map

 $\tau = \tau_0 \colon T_0(M) \longrightarrow H^0(X, \mathcal{T})$

 $(T_0(M)$ is the tangent space of M at 0) by the formula