12. The Stable Jet Range of Differential Complexes

By Kōji Shiga

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kunihiko Kodaira, M. J. A., Feb. 12, 1972)

1. Let M be an *n*-dimensional smooth manifold with countable basis. A topological space W is called an inductive vector bundle over M if there is an increasing sequence of finite-dimensional smooth vector bundles W_k $(k=0, 1, \cdots)$ over M, W_k being a subbundle of W_{k+1} , such that $\lim \dim W_k = \infty$ and $W = \varinjlim W_k$ (inductive limit space). Then Wbecomes a fibre space over M. We can naturally define the space of smooth cross-sections $\Gamma(W)$ which has a module structure over the algebra \mathcal{E} of smooth functions on M. We endow $\Gamma(W)$ with a nuclear topology such that, if M is compact, $\Gamma(W)$ coincides with the inductive limit space $\varinjlim \Gamma(W_k)$ where each $\Gamma(W_k)$ is assumed to have the C^{∞} topology. Two inductive vector bundles W and W' are called isomorphic if $\Gamma(W) \cong \Gamma(W')$ as topological vector spaces and \mathcal{E} -modules.

We say that a sequence

 $0 \xrightarrow{} \sum^{0} \xrightarrow{} \sum^{1} \xrightarrow{} \sum^{2} \xrightarrow{} \cdots$

is a differential complex over M if i) each \sum^{p} is an \mathcal{E} -submodule of some $\Gamma(W^{p})$, ii) d is continuous and $d \circ d = 0$, iii) supp $dL \subset$ supp L where supp L means the support of $L \in \sum^{p}$.

2. Suppose that finite-dimensional smooth vector bundles E and F over M be given. Note that the jet bundles $J^{k}(E)$ of E (k=0, 1, 2, ...) have the canonical surjective maps $\lambda^{k}: J^{k+1}(E) \rightarrow J^{k}(E)$. Hence we obtain the injective maps

 $(\lambda^k)^*$: Hom $(J^k(E), F) \rightarrow$ Hom $(J^{k+1}(E), F)$ $(k=0, 1, 2, \cdots)$, and thus the inductive vector bundle

 $C^1(E,F) = \lim \operatorname{Hom} (J^k(E),F)$

is constructed. The cross-section space of $C^{1}(E, F)$ is regarded as the space of the differential operators from $\Gamma(E)$ to $\Gamma(F)$.

More generally, set

 $C^{p}(E, F) = \varinjlim \operatorname{Hom} (\wedge^{p} J^{k}(E), F), \qquad p = 1, 2, \cdots$ $C^{0}(E, F) = \overrightarrow{F},$

and write $C^{p}[E, F] = \Gamma(C^{p}(E, F))$ for $p = 0, 1, \cdots$.

Proposition. Each $C^{p}[E, F]$ is canonically identified with the space of continuous multilinear alternating mappings from $\Gamma(E) \times \cdots \times \Gamma(E)$ (p times) to $\Gamma(F)$ satisfying the condition

 $\operatorname{supp} L(\xi_1, \cdots, \xi_p) \subset \operatorname{supp} \xi_1 \cap \cdots \cap \operatorname{supp} \xi_p.$

3. Our main concern is to study the cohomological structure of a