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1. Let M be an n-dimensional smooth manifold with countable
basis. A topological space W is called an inductive vector bundle over
M if there is an increasing sequence of finite-dimensional smooth vector
bundles W, (k=0,1, .-.) over M, W, being a subbundle of W,,,, such
that lim dim W= oo and W=Ilim W, (inductive limit space). Then W
becomes a fibre space over M. We can naturally define the space of
smooth cross-sections ['(W) which has a module structure over the
algebra & of smooth functions on M. We endow ['(W) with a nuclear
topology such that, if M is compact, I'(W) coincides with the inductive
limit space li_r)nl"’(W,J where each I'(W,) is assumed to have the C~-
topology. Two inductive vector bundles W and W’ are called isomor-
phic if I'(W)=I'(W’) as topological vector spaces and &-modules.

We say that a sequence

0 Zo d Zl d ZZ d )
is a differential complex over M if i) each >,? is an &-submodule of
some I'(W?), ii) d is continuous and dod=0, iii) supp dL Csupp L where
supp L means the support of L e > 7.

2. Suppose that finite-dimensional smooth vector bundles E and
F over M be given. Note that the jet bundles J*(E) of E (£k=0,1, 2,
--+) have the canonical surjective maps A*: J**'(F)—J*(E). Hence we
obtain the injective maps

(A%*: Hom (J*(E), F)—Hom (J**'(E), F")
(k=0,1,2, -..), and thus the inductive vector bundle
C\(F, F):l_iLn Hom (J*(E), F)
is constructed. The cross-section space of C'(E, F) is regarded as the
space of the differential operators from I'(E) to I'(F).
More generally, set

C?(E, F)=li_r)n Hom (A?J*(E), F), p=1,2, ...

C(E,F)=F,
and write C?[E, Fl=I'(C*(E, F)) for p=0,1, .- ..

Proposition. Fach CP?[E,F] is canonically identified with the
space of continuous multilinear alternating mappings from I'(E)X - .-
X T'(E) (p times) to I'(F) satisfying the condition

supp L(§,, - -+, &) Csupp §,N - - - Nsupp &,.
3. Our main concern is to study the cohomological structure of a




