42. L-ideals of Measure Algebras

By Tetsuhiro SHIMIZU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., March 13, 1972)

1. Introduction. Let G be a non-discrete locally comapct abelian group with the dual group Γ of G. We will denote by M(G) the Banach algebra of all bounded regular Borel measures on G under convolution multiplication. If $\mu, \nu \in M(G)$, then their convolution product will be denoted $\mu * \nu$. We shall use additive notation for the group operation in G.

If $\mu, \nu \in M(G)$, then " $\nu \ll \mu$ " will mean " ν is absolutely continuous with respect to μ " and " $\mu \perp \nu$ " will mean " μ and ν are mutually singular". If \mathfrak{M} is a closed subspace (subalgebra, ideal) of M(G) will be called an *L*-subspace (*L*-subalgebra, *L*-ideal) provided $\mu \in \mathfrak{M}, \nu \in M(G)$ and $\nu \ll \mu$ imply $\nu \in \mathfrak{M}$. If \mathfrak{M} is an *L*-subspace and $\mu \in M(G)$, then we say $\mu \perp \mathfrak{M}$ provided $\mu \perp \nu$ for each $\nu \in \mathfrak{M}$. We set $\mathfrak{M}^{\perp} = \{\mu \in M(G) : \mu \perp \mathfrak{M}\}$.

It is known that there exists a compact commutative topological semigroup S with identity and an order preserving isometric isomorphism θ of M(G) into M(S) such that:

T-(a) the image of M(G) in M(S) is weak-* dense:

T-(b) each multiplicative linear functional h on M(G) has the form

 $h(\mu) = \int f d\theta \mu$ for some non-zero continuous semicharacter on S;

T-(c) there are enough non-zero continuous semicharacter on S to separate points; and

T-(d) if $\mu \in M(G)$, $\nu \in M(S)$ and $\nu \ll \theta \mu$ then there is a measure $\omega \in M(G)$ such that $\omega \ll \mu$ and $\theta \omega = \nu$ (cf. [2]).

We call S the structure semigroup of M(G). The space of all nonzero continuous semicharacters on S is denoted by \hat{S} . We may consider \hat{S} to be the maximal ideal space of M(G), if we define the Gelfand transform of $\mu \in M(G)$ by $\hat{\mu}(f) = \int_{S} f d\theta \mu$ for $f \in \hat{S}$, and give \hat{S} the weakest topology under which all of the functions $\hat{\mu}$ for $\mu \in M(G)$ are continuous. Since M(G) has identity, \hat{S} is a compact semigroup under pointwise multiplication. Pointwise multiplication is not generally continuous in the Gelfand topology. However, for fixed $g \in \hat{S}$ it is easily seen that the map $f \rightarrow gf$ is weakly continuous. We may consider Γ to be the maximal group at identity. In other word, $\Gamma = \{f \in S : |f| \equiv 1\}$. As well known, if $\mu \in M(G)$ and $\hat{\mu}(f) = 0$ for all $f \in \Gamma$, then $\mu = 0$.