73. On the Existence of Quasiperiodic Solutions of Nonlinear Hyperbolic Partial Differential Equations

By Masaru YAMAGUCHI

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1972)

1. Introduction.

In this note we shall consider a global property, that is, the quasiperiodic property, of the solutions of the following quasilinear one dimensional wave equation with dissipative term αu_t , where α is a constant:

(1) $M(u) = u_{tt} - u_{xx} + \alpha u_t = h(x, t, u, u_x, u_t)$, where h is quasiperiodic with basic frequencies $\omega_1, \dots, \omega_m$ in t. We shall show the existence of such quasiperiodic solutions of the form (1) that have the same basic frequencies as h and satisfy the boundary conditions $u(0, t) = u(\pi, t) = 0$. These solutions are classical solutions.

The case m=1 is the periodic case and was already solved by Rabinowitz [1], [2]. Especially, in [2] equation is strictly nonlinear.

2. Notations and definitions.

Definition. f(x, t) is called *quasiperiodic* with basic frequencies $\omega_1, \dots, \omega_m$ in t, if there exists a function $F(x, \theta_1, \dots, \theta_m)$ such that $f(x, t) = F(x, \omega_1 t, \dots, \omega_m t)$, where $F(x, \theta_1, \dots, \theta_m)$ is a continuous function of period 2π in $\theta_1, \dots, \theta_m$. Basic frequencies $\omega_1, \dots, \omega_m$ are real numbers. We shall denote by $\mathcal{B}^k(\omega_1, \dots, \omega_m)$ the class of f(x, t) for which $\mathcal{F}(x, \theta_1, \dots, \theta_m)$ is C^k -class in $x, \theta_1, \dots, \theta_m$ and by $\mathcal{F}^k(\omega_1, \dots, \omega_m) \subset \mathcal{B}^k(\omega_1, \dots, \omega_m)$ the class of f(x, t) which is 2π -periodic in $x(1 \le k \le \infty)$. Every $f(x, t) \in \mathcal{F}^k$ is expanded in the Fourier series if $k \ge 1$:

$$f(x,t) = \sum_{j \in \mathbf{Z}, k \in \mathbf{Z}^m} f_{jk} e^{ijx} e^{i(\omega,k)t}.$$

We introduce the norms in F^k by $||f|| = \sum |f_{jk}|$ and $||f||_1 = ||f|| + ||f_x|| + ||f_t||.$

Now we assume that h(x, t, p, q, r) is in the form

$$f(x, t) + g(x, t, p, q, r), f(x, t) \equiv 0.$$

Then we can represent g(x, t, p, q, r) in the form $G(x, \omega_1 t, \dots, \omega_m t, p, q, r)$, where $G(x, \theta_1, \dots, \theta_m, p, q, r)$ is continuous and 2π -periodic in $\theta_1, \dots, \theta_m$. Further we assume that f(x, t) and $g(x, t, u, u_x, u_t)$ vanish at the boundary $x=0, x=\pi$.

3. The existence of quasiperiodic solutions.

3.1. At first we consider the case where the forcing term $h(x, t, u, u_x, u_t)$ does not depend on u, u_x, u_t :

(2)
$$M(u) = u_{tt} - u_{xx} + \alpha u_t = f(x, t).$$