69. A Note on the Dilation Theorems. II

By Masahiro Nakamura and Hiroshi Takai
Department of Mathematics, Osaka Kyoiku University
(Comm. by Kinjirô Kunugi, m. J. A., May 12, 1972)

1. In the previous note [9], one of the authors discussed, jointly with Yamada, the mutual dependency of several dilation theorems. Especially, it is pointed out that Stinespring-Umegaki's algebra dilation theorem implies the so-called strong dilation theorem of Sz.-Nagy. However, the proofs of the implication are somewhat lengthy. In the present note, it will be shown that Stinespring-Umegaki's theorem can serve a proof of more general dilation theorem of Foiaş-Suciu [2]. Some consequences are also discussed.
2. The following theorem is the algebra dilation theorem due to [7] and [10]:

Theorem 1 (Stinespring-Umegaki). If V is a completely positive (or positive definite) linear mapping defined on a unital C^{*}-algebra B with the range in the algebra $B(H)$ of all operators on a Hilbert space H, and V satisfies $V 1=1$, then there is a (*-preserving) representation U of B on K such that

$$
\begin{equation*}
V f=p U f \mid H \tag{1}
\end{equation*}
$$

for any $f \in B$, where K includes H as a subspace and p is the projection of K onto H.

In the present note, the notion of the complete positivity is not necessary, since Stinespring [7; Theorem 4] established that the complete positivity coincides with the usual positivity if B is commutative which is the case treated in this note. Exactly, in the present note, B is always the algebra $C(X)$ of all continuous functions defined on a compact Hausdorff space X equipped with the sup-norm.
3. A subalgebra A of $C(X)$ is a function algebra on X if A satisfies
(i) A contains the constants, and
(ii) A separates the points of X.

A function algebra A is a Dirichlet algebra on X if the real part $\operatorname{Re} A$ of all real parts of functions belonging to A is dense in the algebra of all real continuous functions on X.

An operator representation V of a function algebra A on a Hilbert space H is an algebra homomorphism of A into $B(H)$ which satisfies (2)

$$
V 1=1
$$

