68. On Normal Approximate Spectrum. II

By Masatoshi FUJII and Ritsuo NAKAMOTO Fuse and Tennoji Senior Highschools

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1972)

1. Introduction. Suppose that a (bounded linear) operator T acts on a Hilbert space \mathfrak{H} . A complex number λ is an approximate propervalue of T if there exists a sequence $\{x_n\}$ of unit vectors such that

(*) $\|(T-\lambda)x_n\| \to 0$ $(u \to \infty)$. The set of all approximate propervalues of T is called the *approximate* spectrum $\pi(T)$ of T. According to Kasahara and Takai [8], an approximate propervalue λ of T is called normal if λ satisfies furthermore (**) $\|(T-\lambda)^*x_n\| \to 0$ $(n \to \infty)$. The set $\pi_n(T)$ of all normal approximate propervalues of T is called the normal approximate spectrum of T. Several equivalent conditions which give the normal approximate spectra are discussed in [4] and [8].

In the present note, we shall concern with some additional properties of the normal approximate spectra of operators. In § 2, we shall give a theorem of Hildebrandt [7; Satz 2 (ii)] and observe its consequences. A theorem of Arveson [1; Theorem 3.1.2] follows at once. A theorem of Stampfli [9] is improved. In § 3, we shall show that a spectraloid is finite in the sense of Williams [10]. In § 4, we shall discuss a variant of a proposition of Bunce [3; Proposition 6].

2. Consequences of Hildebrandt's theorem. Hildebrandt [7] stated without proof the following theorem:

Theorem 1 (Hildebrandt). If λ belongs to $\partial W(T)$ and $\pi(T)$, then $\lambda \in \pi_n(T)$, where $\partial W(T)$ is the frontier of the numerical range

(1)
$$W(T) = \{(Tx \mid x); ||x|| = 1\}$$

Proof. We can assume that $\lambda = 0$ and Re $T \ge 0$ where

(2) Re
$$T = \frac{1}{2}(T+T^*)$$
.

Then we have

$$|(Tx_n|x_n)| \leq ||Tx_n|| \rightarrow 0 \qquad (n \rightarrow \infty),$$

so that we have

 $(\operatorname{Re} Tx_n | x_n) \rightarrow 0 \qquad (n \rightarrow \infty).$

Let A be the (positive) square-root of Re T. Then we have

 $\|Ax_n\|^2 = (A^2x_n | x_n) = (\operatorname{Re} Tx_n | x_n) \to 0 \qquad (n \to \infty).$

Therefore we have

$$\|\operatorname{Re} Tx_n\| = \|A^2x_n\| \to 0 \qquad (n \to \infty),$$