92. On the Index of Hypoelliptic Pseudo-differential Operators on Rⁿ

By Hitoshi KUMANO-GO

Department of Mathematics, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., June 2, 1972)

§0. Introduction. The purpose of this paper is to prove that the index of a system P of pseudo-differential operators on \mathbb{R}^n vanishes, if the symbol $\sigma(P)(x,\xi)$ is slowly varying in the sense of Grushin [1] and satisfies the condition which is a modification of Hörmander's condition for the existence of parametrix (cf. Hörmander [3] and Šubin [8]).

We shall denote by $S_{\rho,\delta}^m$, $0 \le \delta < \rho \le 1$, $-\infty < m < \infty$, the set of all C^{∞} -symbols $p(x,\xi)$ defined in $R_x^n \times R_{\xi}^n$, which satisfy for multi-indices $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$,

 $(0.1) |p_{(\alpha)}^{(\beta)}(x,\xi)| \leq C_{\alpha,\beta} (1+|\xi|)^{m+\delta|\alpha|-\rho|\beta|}$

for some constants $C_{\alpha,\beta}$, where $p_{\alpha,\beta}^{(\beta)}(x,\xi) = D_x^{\alpha}\partial_{\xi}^{\beta}p(x,\xi)$, $D_x^{\alpha} = (-i\partial/\partial x_1)^{\alpha_1}$ $\cdots (-i\partial/\partial x_n)^{\alpha_n}$, $\partial_{\xi}^{\beta} = (\partial/\partial \xi_1)^{\beta_1} \cdots (\partial/\partial \xi_n)^{\beta_n}$. We set $S_{\rho,\delta}^{\infty} = \bigcup_m S_{\rho,\delta}^m$ and $S_{\rho,\delta}^{-\infty} = \bigcap_m S_{\rho,\delta}^m$. For a symbol $p(x,\xi) \in S_{\rho,\delta}^m$ we define a pseudo-differential operator $p(X, D_x)$ by

(0.2)
$$p(X, D_x)u(x) = (2\pi)^{-n} \int e^{ix \cdot \xi} p(x, \xi) \hat{u}(\xi) d\xi,$$

where $\hat{u}(\xi)$ denotes the Fourier transform of a rapidly decreasing function u(x) defined by $\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx$.

We say that a symbol $p(x,\xi) (\in S_{\rho,\delta}^m)$ is slowly varying, if the estimate (0.1) holds for a bounded function $C_{\alpha,\beta}(x)$ such that $C_{\alpha,\beta}(x) \to 0$ as $|x| \to \infty$ in case $\alpha \neq 0$ (cf. Grushin [1], p. 206).

Our main theorem is stated as follows:

Main theorem. Let $p(x, \xi) = (p_{jk}(x, \xi))$ be an $l \times l$ matrix of symbols $p_{jk}(x, \xi)$ of class $S_{\rho,\delta}^m, m > 0$, which are slowly varying. Assume that there exist positive constants c_0, c_1 and $0 < \tau \leq 1$ such that $(p(x, \xi) - \zeta I)^{-1}$ exists on

 $\Xi_{\xi} = \{ \zeta \in C; \operatorname{dis} (\zeta, (-\infty, 0]) \leq c_0 (1 + |\xi|)^{\tau m} \}$

and the estimate of the form

(0.3) $\|p_{(\alpha)}^{(\beta)}(x,\xi)(p(x,\xi)-\zeta I)^{-1}\| \leq C_{\alpha,\beta}(x)(1+|\xi|)^{\delta|\alpha|-\rho|\beta|}$ holds uniformly on Ξ_{ξ} , where $\|\cdot\|$ denotes a matrix norm, and $C_{\alpha,\beta}(x)$ is a bounded function which tends to zero as $|x| \to \infty$ in case $\alpha \neq 0$. Then the operator $P = p(X, D_x)$ as the map from $L^2 = L^2(\mathbb{R}^n)$ into itself with the domain $\mathcal{D}(P) = \{u \in L^2; Pu \in L^2\}$ is Fredholm type and we have