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1. Introduction. Let tO be a domain in Rn with boundary uni-
formly regular of class m+ 1. Let-a(x)D" be a ormally self-
adjoint positively elliptic operator o order m with coefficients defined
and bounded in 9. Let A be a self-adjoint realization of with
domain contained in W(). By N($) we denote the number of
eigenvalues =< t of A. Assuming that the highest order coefficients o
A are continuous R. Beals [2] investigated the asymptotic behaviour of
the resolvent kernel and spectral unction o A, and as an application
o his results he proved that the asymptotic ormula

N(t)-- Cot/+0(-/), t--,c (1.1)
holds for any 0 < 0< h/(h+ 3) provided that the top-order coefficients
of are uniformly HSlder continuous of order h. The object of this
note is to improve the remainder estimate in (1.1) and prove the
following theorem.

Theorem. Suppose 2 is bounded. Le A be a self-ad]oin$ semi-
bounded realization of wi$h domain contained in W(J2). If m<n/2
we make the additional assumption that A satisfies the resolvent
condition for 2<=q<=n/m+e with some 0 ([2]), i.e. for each 30
there are constants c and c. such that (A--)- induces a bounded
operator from Lq() to W() and

(A 2)-u Ilq =< c 121- u

for all u e Lq(O), lal>=c, larg 1>=6. If the highest order coefficients of
are uniformly continuous of order h, then

N(t) Cotn/ + O(t(n-)/) (1.2)
for any 0 t h/ (h+ 2), where

f ddx.
tO a(x,)l

If the highest order coefficients of 4 belong to the class C/ in some
domain containing 2, then (1.2) holds for any 0<t<(h+ 1)/(h+3).

2. Outline of the proof of the main theorem,

If mn/2, we have only to apply the main theorem of K. Maruo
[3] to the sesquilinear form (Au, Av). Hence, in what follows we
assume that m=< n/2.

Lemma 1 (R. Beals [2]). If S and T are bounded operators in
Lz(2) such that the ranges of S and T* are contained in L([2). Then


