109. Structure of Left QF-3 Rings

By Toyonori Kato
College of General Education, Tohoku University, Kawauchi, Sendai

(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1972)

The purpose of this note is to establish a structure theorem for left QF-3 rings, an analogue to one for QF-3 algebras by Morita [14], introducing a new notion of left QF-3 rings.

It turns out that not only faithful projective-injective modules but also dominant modules play a vital role in the structure theory of left (-right) QF-3 rings.

Throughout this note, rings R and S will have identity and modules will be unital. ${ }_{s} X$ will signify the fact that X is a left S-module. We adopt the notational convention of writing module-homomorphism on the side opposite the scalars.

Definition (Kato [10]). A module P_{R} is called dominant if P_{R} is faithful finitely generated projective and ${ }_{S} P$ is lower distinguished ${ }^{1{ }^{1}}$ with $S=\operatorname{End}\left(P_{R}\right)$.

The following definition of left QF-3 rings finds no mention in the literature.

Definition. A ring R will be called left QF-3 if R contains idempotents e and f such that $R e$ is a faithful injective left ideal and $f R$ is a dominant right ideal.

Lemma $1^{2)}$. If e and f are idempotents of R such that ${ }_{R} R e$ is injective and $f R_{R}$ is faithful, then
(1) $\left.R e=\operatorname{Hom}_{f_{f R f}} f R,_{f R f} f R e\right)$, so $e R e=\operatorname{End}\left(f_{f R f} f R e\right)$.
(2) ${ }_{f R f} f R e$ is injective.

Proof. This is Proposition 2.1 of Tachikawa [25].
Lemma 2. The double centralizer of any faithful torsionless right R-module is a left quotient ${ }^{3)}$ ring of R.

Proof. See Colby and Rutter [3, 4], Tachikawa [25], Faith [5], and Kato [11].

Lemma 3. Let ${ }_{s} V$ be a cogenerator and $T=\operatorname{End}\left({ }_{s} V\right)$. Then ${ }_{s} V$ is linearly compact if and only if V_{T} is injective; then a module ${ }_{S} U$ is linearly compact if and only if ${ }_{s} U$ is V-reflexive.

[^0]
[^0]: 1) ${ }_{S} P$ is lower distinguished if ${ }_{S} P$ contains a copy of each simple module. Cf. Azumaya [1].
 2) Cf. Kato [13].
 3) Q is a (the maximal) left quotient ring of R if Q is a ring extension of R and ${ }_{R} Q$ is a (the maximal) rational extension of ${ }_{R} R$. Cf. Findlay and Lambek [6].
