No. 7]

109. Structure of Left QF-3 Rings

By Toyonori KATO

College of General Education, Tohoku University, Kawauchi, Sendai

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1972)

The purpose of this note is to establish a structure theorem for left QF-3 rings, an analogue to one for QF-3 algebras by Morita [14], introducing a new notion of left QF-3 rings.

It turns out that not only faithful projective-injective modules but also dominant modules play a vital role in the structure theory of left (-right) QF-3 rings.

Throughout this note, rings R and S will have identity and modules will be unital. ${}_{s}X$ will signify the fact that X is a left S-module. We adopt the notational convention of writing module-homomorphism on the side opposite the scalars.

Definition (Kato [10]). A module P_R is called dominant if P_R is faithful finitely generated projective and ${}_{s}P$ is lower distinguished¹ with $S = \text{End}(P_R)$.

The following definition of left QF-3 rings finds no mention in the literature.

Definition. A ring R will be called left QF-3 if R contains idempotents e and f such that Re is a faithful injective left ideal and fR is a dominant right ideal.

Lemma 1^{2} . If e and f are idempotents of R such that _RRe is injective and fR_R is faithful, then

(1) $Re = \operatorname{Hom}_{(fRf}fR, f_{Rf}fRe)$, so $eRe = \operatorname{End}_{(fRf}fRe)$.

(2) $_{fRf}fRe$ is injective.

Proof. This is Proposition 2.1 of Tachikawa [25].

Lemma 2. The double centralizer of any faithful torsionless right R-module is a left quotient³ ring of R.

Proof. See Colby and Rutter [3, 4], Tachikawa [25], Faith [5], and Kato [11].

Lemma 3. Let $_{s}V$ be a cogenerator and $T = \text{End}(_{s}V)$. Then $_{s}V$ is linearly compact if and only if V_{T} is injective; then a module $_{s}U$ is linearly compact if and only if $_{s}U$ is V-reflexive.

2) Cf. Kato [13].

¹⁾ $_{S}P$ is lower distinguished if $_{S}P$ contains a copy of each simple module. Cf. Azumaya [1].

³⁾ Q is a (the maximal) left quotient ring of R if Q is a ring extension of R and $_{R}Q$ is a (the maximal) rational extension of $_{R}R$. Cf. Findlay and Lambek [6].