107. A Note on Cogenerators in the Category of Modules

By Yutaka Kawada
(Comm. by Kenjiro Shoda, m. J. A., Sept. 12, 1972)

Let A be a ring with identity and ${ }_{A} W$ a cogenerator in the category of unitary left A-modules, and denote by $B=\operatorname{End}\left({ }_{A} W\right)$ the endomorphism ring of ${ }_{A} W$. Then W is regarded as an $A-B$-bimodule. As for the structure of ${ }_{A} W$ in general, there was a useful result of Osofsky [5, Lemma 1]. As for the structure of W_{B}, recently Onodera has obtained an interesting result [4, Theorem 1].

The purpose of this paper is to establish the following two theorems:
Theorem 1. Let ${ }_{A} W$ be a cogenerator, and let $B=\operatorname{End}\left({ }_{A} W\right)$ and $C=\operatorname{End}\left(W_{B}\right)$. Then W_{B} is absolutely pure and semi-injective. Furthermore A is dense in C relative to the finite topology. In particular, if ${ }_{A} W$ is finitely cogenerating in the sense of Morita [3], then ${ }_{A} W$ possesses the double centralizer property, i.e. $C=A$.

Theorem 2. Let ${ }_{A} W$ be a cogenerator and $B=\operatorname{End}\left({ }_{A} W\right)$, and denote by $S\left(W_{B}\right)$ the socle of W_{B}. Let further $\left\{V_{\lambda} \mid \lambda \in \Lambda\right\}$ be a complete representative system of isomorphism classes of simple left A-modules such that $E\left(V_{\lambda}\right) \subset W$ for each $\lambda \in \Lambda\left(C f .\left[5\right.\right.$, Lemma 1]), where $E\left(V_{\lambda}\right)$ denotes an injective hull of V_{λ}. Then $S\left(W_{B}\right) \subset{ }^{\prime} W_{B}$, and

$$
S\left(W_{B}\right)=\sum_{\lambda \in A} \oplus V_{\lambda} B
$$

is the decomposition of $S\left(W_{B}\right)$ into homogeneous components.
Throughout this paper, all modules are assumed to be unitary, and we shall keep above notations and meanings. In particular, ${ }_{A} W$ denotes always a cogenerator and B (resp. C) denotes the endomorphism ring of ${ }_{A} W$ (resp. of W_{B}).

1. Proof of Theorem 1.

Previous to this, we need some lemmas.
Lemma 1 [4, Theorem 1]. Let M be a left A-module and set M_{B}^{*} $=\operatorname{Hom}_{A}\left({ }_{A} M,{ }_{A} W_{B}\right)$. Then, for each finitely generated B-submodule U of M_{B}^{*} and for each B-homomorphism $f: U_{B} \rightarrow W_{B}$, there exists an element v in M such that $f=\rho(v) \cdot i$, where $i: U_{B} \rightarrow M_{B}^{*}$ implies the inclusion map and $\rho: M \rightarrow \operatorname{Hom}_{B}\left(M_{B}^{*}, W_{B}\right)$ is the canonical map defined by $\rho(x)(g)$ $=g(x)$ for every $x \in M$ and $g \in M^{*}$.

Let us denote by W^{n} (resp. B^{n}) the direct sum of n copies of W (resp. of B). For a subset X of W^{n}, set
$(0: X)_{B^{n}}=\left\{\left(b_{1}, \cdots, b_{n}\right) \in B^{n} \mid \sum v_{i} b_{i}=0 \quad\right.$ for all $\left.\left(v_{1}, \cdots, v_{n}\right) \in X\right\}$.
Similarly for a subset Y of B^{n}, set

