107. A Note on Cogenerators in the Category of Modules

By Yutaka KAWADA

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1972)

Let A be a ring with identity and $_{A}W$ a cogenerator in the category of unitary left A-modules, and denote by $B = \text{End}(_{A}W)$ the endomorphism ring of $_{A}W$. Then W is regarded as an A-B-bimodule. As for the structure of $_{A}W$ in general, there was a useful result of Osofsky [5, Lemma 1]. As for the structure of W_{B} , recently Onodera has obtained an interesting result [4, Theorem 1].

The purpose of this paper is to establish the following two theorems:

Theorem 1. Let $_{A}W$ be a cogenerator, and let $B = \text{End}(_{A}W)$ and $C = \text{End}(W_{B})$. Then W_{B} is absolutely pure and semi-injective. Furthermore A is dense in C relative to the finite topology. In particular, if $_{A}W$ is finitely cogenerating in the sense of Morita [3], then $_{A}W$ possesses the double centralizer property, i.e. C = A.

Theorem 2. Let $_{A}W$ be a cogenerator and $B = \text{End}(_{A}W)$, and denote by $S(W_{B})$ the socle of W_{B} . Let further $\{V_{\lambda} | \lambda \in A\}$ be a complete representative system of isomorphism classes of simple left A-modules such that $E(V_{\lambda}) \subset W$ for each $\lambda \in \Lambda$ (Cf. [5, Lemma 1]), where $E(V_{\lambda})$ denotes an injective hull of V_{λ} . Then $S(W_{B}) \subset' W_{B}$, and $S(W_{B}) = \Sigma \oplus V_{\lambda}B$

$$(W_B) = \sum_{\lambda \in A} \oplus V_{\lambda}B$$

is the decomposition of $S(W_B)$ into homogeneous components.

Throughout this paper, all modules are assumed to be unitary, and we shall keep above notations and meanings. In particular, $_{A}W$ denotes always a cogenerator and B (resp. C) denotes the endomorphism ring of $_{A}W$ (resp. of W_{B}).

1. Proof of Theorem 1.

Previous to this, we need some lemmas.

Lemma 1 [4, Theorem 1]. Let M be a left A-module and set $M_B^* = \operatorname{Hom}_A(_AM, _AW_B)$. Then, for each finitely generated B-submodule U of M_B^* and for each B-homomorphism $f: U_B \to W_B$, there exists an element v in M such that $f = \rho(v) \cdot i$, where $i: U_B \to M_B^*$ implies the inclusion map and $\rho: M \to \operatorname{Hom}_B(M_B^*, W_B)$ is the canonical map defined by $\rho(x)(g) = g(x)$ for every $x \in M$ and $g \in M^*$.

Let us denote by W^n (resp. B^n) the direct sum of n copies of W (resp. of B). For a subset X of W^n , set

 $(0:X)_{B^n} = \{(b_1, \dots, b_n) \in B^n | \sum v_i b_i = 0$ for all $(v_1, \dots, v_n) \in X\}$. Similarly for a subset Y of B^n , set