100. On Surfaces of Class VII₀

By Masahisa INOUE

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1972)

1. In this short note we consider the surfaces satisfying the following conditions:

(*) $b_1=1, b_2=0$; the surfaces contain no curves.

We give two kinds of examples satisfying (*), and give a theorem which determines the surfaces satisfying (*) under an additional assumption. As a result of this theorem, we give three corollaries. The first of the corollaries is proved independently by Enrico Bombieri by a similar method.

Details will be published elsewhere.

2. Let $M \in SL(3, \mathbb{Z})$ be a unimodular matrix, with one real and two non-real eigenvalues, $\alpha, \beta, \overline{\beta}$, where $\alpha\beta\overline{\beta}=1$ and $\alpha>1$. Let

 $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ be a real eigenvector of α and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ an eigenvector of β .

Let G_M be the group generated by the analytic automorphisms:

$$(W, Z) \rightarrow (W + m_1a_1 + m_2a_2 + m_3a_3, Z + m_1b_1 + m_2b_2 + m_3b_3),$$

 $(m_1, m_2, m_3) \in \mathbb{Z}^3,$

 $(W, Z) \rightarrow (\alpha W, \beta Z),$

of $H \times C$, where H is the upper half-plane. The action of G_M on $H \times C$ is properly discontinuous and fixed point free. Now we define an analytic surface S_M to be $H \times C/G_M$. Then S_M is differentiably a 3-torus bundle over a circle, $b_1(S_M) = 1$, $b_2(S_M) = 0$, and S_M has the following properties.

Proposition 1.

- i) S_M contains no curves,
- ii) dim $H^0(S_M, \Theta) = \dim H^1(S_M, \Theta) = \dim H^2(S_M, \Theta) = 0.$

3. Let $N = (n_{ij}) \in SL(2, \mathbb{Z})$ be a unimodular matrix with two real eigenvalues, $\alpha, 1/\alpha$, where $\alpha > 1$. Let

$$\boldsymbol{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
 and $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$

be real eigenvectors of α and $1/\alpha$, respectively. We fix an arbitrary complex number t and fix two integers, p, q, such that

$$0 \le p, q \le |\det(N - I)| - 1.$$

Let $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ be the solution of the following equation: