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The purpose of the present paper is to give some results concern-
ing (complex) characters and unipotent elements of finite Chevelley
groups. Main results are proved by two simple lemmas stated in
section 1. Throughout the paper G denotes a connected reductive
linear algebraic group defined over a finite field k of q elements. For
simplicity we also assume that G has a maximal torus T which splits
over k. If L is an algebraic subgroup of G defined over k, L(k) denotes
the finite group of its k-rational elements. If S is a finite set, IS] denotes
the number of its elements. For a finite group H and class functions

and . on H, the inner product (, )z is defined by

If K is a subgroup of H and 0 is a class unction on K, i[0 K--,H] (or i[0])
denotes the class function on H induced by .

1. Let W be the Weyl group o G relative to T and B a fixed Borel
k-subgroup of G containing T. B determines a set / o positive roots
and a set A of simple roots in the system q o roots of G relative to T.
For each subset 8 of A, let P be the parabolic k-subgroup correspond-
ing to c and G, U its Levi k-subgroup and unipotent radical (see 3 of
the paper of A. Borel and J. Tits in Publ. de Math. I. H. E. S. n27
(1965)). G is connected reduetive and the root system qg of G relative
to T is spanned by . We denote by W the Weyl group of G relative
to T.

Lemma 1 (L. Solomon, C. W. Curtis). (a) Let 1 be the 1-charac-
ter of W and the alternating character of W. Then

s (-- 1)tl i[l WW].
(b) Let P(k) be the set of unipotent elements of P(k) and O be the

class function on P(k) defined by

O(x)- {1 if x P(k),
0 otherwise.

If we put
(1.1)
then

0 , (-- 1) i[Oe P(H)G(H)],

O(x) q if x-- 1,
0 otherwise,


