146. On the Structure of Fourier Hyperfunctions*

By Akira KANEKO University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., Nov. 13, 1972)

We show below a complete analogue of the following structure theorem for the temperate distributions: Every element $u \in \mathcal{S}'$ can be expressed in the form $u = (1 - \Delta)^N f$, where f is a temperate continuous function. Thus Corollary 1.13 in [3] is improved, and Remark 1.15 there should be cut away. We refer to [3] for the terminology employed here.

Theorem. For every Fourier hyperfunction $u \in Q$ we can find an elliptic local operator J(D) and an infinitely differentiable function f(x) of infra-exponential growth satisfying u=J(D)f.

By the word "infra-exponential" we mean the following type of estimate:

$$|f(x)| \le C_s \exp(\varepsilon |x|), \quad \forall \varepsilon > 0, \quad {}^{\exists}C_s > 0.$$

Note that a continuous function of infra-exponential growth is "temperate" in the sense of hyperfunction theory. Especially it can be considered as a Fourier hyperfunction in a standard way.

Now let us say that a continuous function $\psi(r) \ge 0$ of one variable $r \ge 0$ is infra-linear if it satisfies the estimate

$$\psi(r) \leq \varepsilon r + C_{\epsilon}, \quad \forall \varepsilon > 0, \quad {}^{\exists}C_{\epsilon} > 0.$$

Before the proof of our theorem we prepare

Lemma. Let $\psi_k(r)$, $k=1,2,\cdots$, be a sequence of infra-linear functions. Then we can find an infra-linear function $\psi(r)$ and a sequence of constants C_k , $k=1,2,\cdots$, satisfying

$$\psi_k(r) \leq \psi(r) + C_k.$$

Proof. Approximating the graphs of $\psi_k(r)$ by polygons from above, and smoothing the corners, we can assume that $\psi_k(r)$ are monotone increasing, concave and differentiable. Further, replacing $\psi_k(r)$ by $\sum_{j=1}^k \psi_j(r)$ if necessary, we can assume that $\psi_k(r) \leq \psi_l(r)$ and $\psi_k'(r) \leq \psi_l'(r)$ for $k \leq l$.

Now choose a_k by the following induction process:

$$\psi_k'(a_k) \leq \frac{1}{k},$$

$$\frac{\psi_{k}(a_{k}) - \psi_{k}(a_{k-1})}{a_{k} - a_{k-1}} \le \frac{1}{k}.$$

^{*)} Partially supported by Fûjukai.