163. Regularity of Solutions of Hyperbolic Mixed Problems with Characteristic Boundary

By Mikio TsuJi

(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1972)
§1. Introduction. At first we recall the following well-known property of a solution of a hyperbolic Cauchy problem which is L^{2}-well posed: If the initial value is in $H^{r}\left(R^{n}\right)$, then the solution is also in $H^{r}\left(R^{n}\right)$ for any time >0. We call this "The property of having finite r norm is persistent".

The author proved in [2] that, for a mixed problem to a first order hyperbolic system, if this mixed problem is L^{2}-well posed and the boundary is not characteristic for the equation, then the property of having finite r-norm is persistent.

In this note we discuss whether the persistent property holds or not in the case where the boundary is characteristic for the equation. Let Ω be a sufficiently smooth domain in $R^{n}, M=\partial / \partial t-L\left(t, x ; D_{x}\right)$ be a first order hyperbolic system whose coefficients are $N \times N$ matrices in $\mathscr{B}([0, T] \times \Omega)$ and $P(t, x)$ be an $N \times N$ matrix defined on $[0, T] \times \partial \Omega$. Let us consider the mixed problem
(P) $\left\{\begin{array}{lll}(1.1) & M[u(t, x)]=f(t, x) & \text { in }[0, T] \times \Omega \\ (1.2) & u(0, x)=\varphi(x) & \text { on } \Omega \\ (1.3) & P(t, x) u(t, x)=0 & \text { on }[0, T] \times \partial \Omega .\end{array}\right.$

Definition. The mixed problem (P) is said to be L^{2}-well posed if for any initial data $\varphi(x) \in D_{0}=\left\{u(x) \in H^{1}(\Omega) ;\left.P(0, x) u\right|_{\partial \Omega}=0\right\}$ and any second member $f(t, x) \in \mathcal{E}_{t}^{0}\left(H^{1}(\Omega)\right) \cap \mathcal{E}_{t}^{1}\left(L^{2}(\Omega)\right)^{1)}$ there exists a unique solution $u(t, x)$ of (P) in $\mathcal{E}_{t}^{1}\left(L^{2}(\Omega)\right) \cap \mathcal{E}_{t}^{0}(\mathscr{D}(L(t))$) satisfying the following energy inequality

$$
\begin{equation*}
\|u(t)\| \leqq c(T)\left(\|\varphi\|+\int_{0}^{t}\|f(s)\| d s\right), \quad t \in[0, T] \tag{1.4}
\end{equation*}
$$

where $c(T)$ is a positive constant which depends only on T.
We remark that $\mathscr{D}(L(t))$ is the closure of $D_{t}=\left\{u(x) \in H^{1}(\Omega)\right.$; $\left.\left.P(t) u\right|_{\partial \Omega}=0\right\}$ by the norm $\|u\|_{L(t)}=\|u\|+\|L(t) u\|$. At first we state

Theorem 1. In the case where $\Omega=R_{+}^{2}=\left\{(x, y) ; x>0, y \in R^{1}\right\}$, $L=\left[\begin{array}{rr}-2 & 0 \\ 0 & 0\end{array}\right] \partial / \partial x+\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \partial / \partial y$ and $P=\left[\begin{array}{ll}1 & 0\end{array}\right]$, the mixed problem (P) is L^{2}-well posed, but the property of having finite r-norm is not persistent. More precisely, if the initial value $\varphi(x, y) \in H^{m}\left(R_{+}^{2}\right)$ satisfies

[^0]
[^0]: 1) $\mathcal{E}_{t}^{k}(E)$ is the set of E-valued functions of t which are k-times continuously differentiable.
