By Mikio TSUJI

(Comm. by Kinjirô KUNUGI, M. J. A., Dec. 12, 1972)

§1. Introduction. At first we recall the following well-known property of a solution of a hyperbolic Cauchy problem which is L^2 -well posed: If the initial value is in $H^r(\mathbb{R}^n)$, then the solution is also in $H^r(\mathbb{R}^n)$ for any time >0. We call this "The property of having finite r-norm is persistent".

The author proved in [2] that, for a mixed problem to a first order hyperbolic system, if this mixed problem is L^2 -well posed and the boundary is not characteristic for the equation, then the property of having finite *r*-norm is persistent.

In this note we discuss whether the persistent property holds or not in the case where the boundary is characteristic for the equation. Let Ω be a sufficiently smooth domain in \mathbb{R}^n , $M = \partial/\partial t - L(t, x; D_x)$ be a first order hyperbolic system whose coefficients are $N \times N$ matrices in $\mathcal{B}([0, T] \times \Omega)$ and P(t, x) be an $N \times N$ matrix defined on $[0, T] \times \partial \Omega$. Let us consider the mixed problem

(1	1)	M[u(t, x)] = f(t, x)	in $[0,T] \times \Omega$
(P) (1		$u(0, x) = \varphi(x)$	on Ω
$(\mathbf{P})\begin{cases} (1\\ (1\\ (1)\end{cases}) \end{cases}$	3)	P(t,x)u(t,x)=0	on $[0, T] \times \partial \Omega$.

Definition. The mixed problem (P) is said to be L^2 -well posed if for any initial data $\varphi(x) \in D_0 = \{u(x) \in H^1(\Omega); P(0, x)u |_{\partial \Omega} = 0\}$ and any second member $f(t, x) \in \mathcal{C}^0_t(H^1(\Omega)) \cap \mathcal{C}^1_t(L^2(\Omega))^1$ there exists a unique solution u(t, x) of (P) in $\mathcal{C}^1_t(L^2(\Omega)) \cap \mathcal{C}^0_t(\mathcal{D}(L(t)))$ satisfying the following energy inequality

(1.4)
$$||u(t)|| \leq c(T) \Big(||\varphi|| + \int_0^t ||f(s)|| \, ds \Big), \quad t \in [0, T],$$

where c(T) is a positive constant which depends only on T.

We remark that $\mathcal{D}(L(t))$ is the closure of $D_t = \{u(x) \in H^1(\Omega); P(t)u|_{\partial g} = 0\}$ by the norm $||u||_{L(t)} = ||u|| + ||L(t)u||$. At first we state

Theorem 1. In the case where $\Omega = R_+^2 = \{(x, y) ; x > 0, y \in R^1\},$ $L = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} \partial / \partial x + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \partial / \partial y$ and $P = \begin{bmatrix} 1 & 0 \end{bmatrix}$, the mixed problem (P) is L²-well posed, but the property of having finite r-norm is not persistent. More precisely, if the initial value $\varphi(x, y) \in H^m(R_+^2)$ satisfies

¹⁾ $\mathcal{C}_{\ell}^{*}(E)$ is the set of *E*-valued functions of *t* which are *k*-times continuously differentiable.