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In model theory of infinitary languages with countable conjunc-
tions and finite strings o quantifiers in the sense o H. J. Keisler’s
book [3], we have some theorems which hold even in the case that there
are uncountably many non-logical symbols, e.g. countable isomorphism
theorem and countable definability theorem (c. Scott [4], Chang [1]
and Kueker [2]). O course we have theorems which hold only in the
case that there are at most countably many non-logical symbols, e.g.
the existence theorem o Scott’s sentence (c. [3]).

In order to make clear the distinction between two kinds o
theorems above mentioned we shall show that or each countable
structure ?/, which is associated to an uncountable infinitary language
L, there is a countable sublanguage L0 o L such that every ormula in
L is definable in by a ormula in L0. We use the standard model
theoretic terminology (c. [2] and [3]). Let L be a first order language
with countable conjunctions and finite strings o quantifiers and pos-
sibly uncountably many non-logical symbols. Then we have the ol-
lowing

Theorem. Let 1 be a countable structure for L. Then there is a
countable sublanguage Lo of L such that for each formula ?(v, v, ., v)
in L there is a formula (vx, v, ., Vn) in Lo such that

(vv)(vv)... (vv)((v, v, ..., v)(v, v, ..., v)).
Proof. For each sequence a=(L’, a, ., a}, where L’ a count-

able sublanguage of L and a, ..., a are elements of I1, let be the
Scott’s sentence o the structure ( [ L’, al,-.., a) which is obtained
rom ?/ L’, the reduct o to L’, by adding a,..., a as new individ-
uals. Then there is a ormula (v, ...,v) in L’ such that =(a,. ., an), i.e. the sentence is obtained 2rom the ormula (v, ., v)
by replacing vl, ., Vn by al, ., an respectively. (We identiy the
elements a in I1 and the constant symbols a corresponding to them.)
Then or each b, ..., b in I1, we have
( 1 ) [bl, ..., bn](::( L’, al, ..., an)’( L’, 51, ..., b).
Hence if a =(L, a, ., a}, a=(L, a, ., a} and L L, then we
have
( 2 ) ?I (Vl)... (Vn)(9,.(Vl, ..., Vn)--->9al(Vl, ..., "t)n)).


