8. On Measurable Functions. II

By Masahiro Takahashi
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1973)

In this part of the paper, some relations between the sets \mathcal{H} and G stated in the introduction in Part I will be discussed.
3. The set of all measurable functions. Assumption 3.1. M is a non-empty set and \mathcal{S} is a ring of subsets of M.

For a topological additive group K, throughout this section we shall use the following notations:

1) Let $G=J=\{0\}$ be the topological additive group consisting of only one element and define the product of $0 \in G$ and $k \in K$ by $0 \cdot k=0$ $\in J$. Then the system (M, G, K, J) becomes an integral system and this integral system is denoted by $\Lambda(K) .{ }^{11}$
2) $\mathscr{F}(K)$ is the total functional group of $\Lambda(K)$.

Then $(\mathcal{S}, \mathcal{F}(K), J)$ is an abstract integral structure.
3) $\mathcal{G}(K)$ is the integral closure of K in $\mathscr{F}(K)$.
4) $\mathcal{G}_{0}(K)$ is the subgroup of $\mathscr{F}(K)$ generated by $S K$.

Then $\mathcal{G}(K)$ is the $\mathscr{F}(K)$-completion of the closure of $\mathcal{G}_{0}(K)$ in $\mathscr{F}(K)$.
5) $\subset(K)$ is the system of neighbourhoods of $0 \in K$ and $\tilde{V}=\{f \mid f$ $\in \mathscr{F}(K), f(M) \subset V\}$ for each $V \in \subset \cup(K)$.

Then $\{\tilde{V} \mid V \in \mathscr{V}(K)\}$ is a base of the system of neighbourhoods of $0 \in \mathscr{F}(K)$.

Now we can state a property of $\mathcal{G}(K)$ corresponding to Theorem 2.1 in [1].

Theorem 3.1. Let $K_{i}, i=1,2, \cdots, n$, be topological additive groups. Let D be a subspace of the product space $\prod_{i=1}^{n} K_{i}$ and φ a uniformly continuous map of D into a topological additive group K. Then, for $f_{i} \in \mathcal{G}\left(K_{i}\right), i=1,2, \cdots, n$, such that $\left(f_{1}(x), \cdots, f_{n}(x)\right) \in D$ for each $x \in M$, and for the map f of M into K defined by $f(x)=\varphi\left(f_{1}(x)\right.$, $\left.\cdots, f_{n}(x)\right)$ for each $x \in M$, it holds that $f \in \mathcal{G}(K)$.

Proof. Let X be an element of \mathcal{S}. It suffices to show that $X f \in \overline{\mathcal{G}_{0}(K)}$ or equivalently that $(X f+\tilde{V}) \cap \mathcal{G}_{0}(K) \neq \phi$ for any $V \in \subset \cup(K)$. The uniform continuity of φ implies the existence of $V_{i} \in \mathcal{V}\left(K_{i}\right)$, $i=1,2, \cdots, n$, satisfying the condition: $\varphi\left(x_{1}, \cdots, x_{n}\right)-\varphi\left(y_{1}, \cdots, y_{n}\right) \in V$

[^0]
[^0]: 1) The topological additive groups G and J play no essential role here. These groups are introduced only for the sake of the definitions of $\mathscr{F}(K), \mathcal{G}(K)$, etc. Therefore, G and J may be replaced by any other groups such that (M, G, K, J) becomes an integral system.
