# 1. A Note on the Selberg Sieve and the Large Sieve 

By Isamu Kobayashi<br>Nagoya University and University of Maryland (Comm. by Kunihiko Kodaira, m. J. A., Jan. 12, 1973)

1. Let $X \geq 1$ be a real number, and let $M, N$ be integers with $N>0$. Suppose that there are $\omega(p)$ residue classes $a_{p, j}(\bmod p)(j=1, \cdots, \omega(p)$, $0 \leq \omega(p)<p$ ) corresponding to each prime $p$, and put $P=\prod_{p \leq x} p$. We define then the integer sequence $f_{n}$ by

$$
f_{n}=\sum_{p \leq X} P p^{-1} \prod_{j=1}^{\omega(p)}\left(n-a_{p, j}\right), \quad(n=M+1, \cdots, M+N)
$$

A. Selberg's sieve method to estimate the quantity

$$
Z=\sum_{\substack{n=M+1 \\(f n, P)=1}}^{M+N} 1
$$

from above is as follows: define multiplicative arithmetic functions $\omega$, $\Phi, \rho$ by

$$
\begin{aligned}
& \omega(d)= \begin{cases}\prod_{p \mid d} \omega(p), & \text { if } d \mid P \\
0, & \text { otherwise },\end{cases} \\
& \Phi(q)=q \prod_{p \mid q}\left(1-\frac{\omega(p)}{p}\right), \\
& \rho(q)=\mu^{2}(q) \prod_{p \mid q} \frac{\omega(p)}{p-\omega(p)},
\end{aligned}
$$

for natural numbers $d, q$, and put

$$
\begin{aligned}
\lambda_{d} & =\mu(d) \frac{d}{\Phi(d)}\left(\sum_{q \leq X} \rho(q)\right)^{-1}\left(\sum_{\substack{q \leq X) d \\
(q, d)=1}} \rho(q)\right), \\
R(d) & =\sum_{\substack{n=\vec{M}+1 \\
d \mid f f_{n}}}^{M+N} 1-\frac{\omega(d)}{d} N .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
Z \leq \sum_{n=M+1}^{M+N}\left(\sum_{d \mid f_{n}} \lambda_{d}\right)^{2}=\frac{N}{\sum_{q \leq X} \rho(q)}+\sum_{d_{1} \leq X} \sum_{d_{2} \leq X} \lambda_{d_{1}} \lambda_{d_{2}} R\left(\left[d_{1}, d_{2}\right]\right), \tag{1.1}
\end{equation*}
$$

where $\left[d_{1}, d_{2}\right.$ ] denotes the least common multiple of $d_{1}, d_{2}$, [5].
On the other hand the large sieve method [1], [4] gives

$$
\left|\sum_{\substack{n=M+1 \\(f, P)=1}}^{M+N} a_{n}\right|_{q \leq X} \sum_{q \leq X} \rho(q) \leq\left(N+2 X^{2}\right) \sum_{\substack{n=M, M+1 \\(f, n, P)=1}}^{M+N}\left|a_{n}\right|^{2}
$$

for arbitrary complex numbers $a_{n}(n=M+1, \cdots, M+N)$, so that we have

$$
\begin{equation*}
Z \leq \frac{N+2 X^{2}}{\sum_{q \leq X} \rho(q)} \tag{1.2}
\end{equation*}
$$

