32. Note on the Results of I. N. Herstein and A. Ramer

By Takasi Nagahara and Hisao Tominaga
Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, m. J. A., Feb. 12, 1973)

Let A be a division ring which is finite over the center C, and B an intermediate ring of A / C. Let Z be the center of B, and V the centralizer $V_{A}(B)$ of B in A. In this note, we shall obtain the results of [1] as applications of the following whose proof is obvious by that of [3; Corollary 11.13].

Theorem 1. Let u be an element of A such that $C[u]$ is a maximal subfield of A. Then, for every non-central element x of A there exists a non-zero y in A such that $A=C\left[x, y u y^{-1}\right]=C\left[y^{-1} x y, u\right]$.

In the proof of [3; Corollary 11.13], we used [2; Lemma 1 (i)], which played an essential role in the proof of [1; Theorem 1], too.

Theorem 2. Let C^{\prime} be an intermediate ring of Z / C. Then, the following conditions are equivalent:
(1) $B=Z$ or $V \neq C^{\prime}$.
(2) C^{\prime} is a maximal subfield of A or $V \neq C^{\prime}$.
(3) $C^{\prime}=B \cap M$ for some maximal snbfield M of A.

Moreover, if one of the above conditions is satisfied then for any maximal subfield $C^{\prime}[u]$ of A there exists some non-zero y in $V_{A}\left(C^{\prime}\right)$ such that $C^{\prime}=B \cap C^{\prime}\left[y u y^{-1}\right]$.

Proof. (1) $\Rightarrow(2)$: If C^{\prime} is not a maximal subfield of A and $V=C^{\prime}$, then $Z=C^{\prime} \nsubseteq V_{A}\left(C^{\prime}\right)=B$, a contradiction.
$(2) \Rightarrow(3)$: It is enough to consider the case $V \neq C^{\prime}$. We set A^{\prime} $=V_{A}\left(C^{\prime}\right)$. Then, $C^{\prime} \subseteq B \subseteq A^{\prime}$ and C^{\prime} is the center of A^{\prime}. Let x be an arbitrary element of $V=V_{A^{\prime}}(B)$ not contained in C^{\prime}. As is well-known, A^{\prime} contains a maximal subfield $C^{\prime}[u]$ which is a simple extension of C^{\prime}. Then, by Theorem 1, there exists a non-zero element y in A^{\prime} such that $A^{\prime}=C^{\prime}\left[x, y u y^{-1}\right]$. Obviously, $B \cap C^{\prime}\left[y u y^{-1}\right] \subseteq V_{A^{\prime}}\left(C^{\prime}[x]\right) \cap V_{A^{\prime}}\left(C^{\prime}\left[y u y^{-1}\right]\right)$ $=V_{A^{\prime}}\left(A^{\prime}\right)=C^{\prime}$, namely, $B \cap C^{\prime}\left[y u y^{-1}\right]=C^{\prime}$. It is easy to see that $C^{\prime}\left[y u y^{-1}\right]$ is a maximal subfield of A.
$(3) \Rightarrow(1): \quad$ If $B \neq Z$ and $V=C^{\prime}$, then $C^{\prime} \subseteq V_{A}\left(C^{\prime}\right)=B$, and hence any maximal subfield M of A containing C^{\prime} is a maximal subfield of B, which implies $M \cap B=M \neq C^{\prime}$.

Cororally 1. The following conditions are equivalent:
(1) $B=Z$ or $V \neq Z$.
(2) For every intermediate ring C^{\prime} of Z / C, there exists a maximal subfield M of A such that $C^{\prime}=B \cap M$.

