31. Note on Right-Regular-Ideal-Rings

By Motoshi Hongan
Tsuyama Technical College
(Comm. by Kenjiro Shoda, M. J. A., Feb. 12, 1973)

Throughout, R is understood to be a ring with 1 , which acts as identity on all (right) R-modules. The notation \cong will be used to denote an R-isomorphism between two R-modules. An R-module M is said to be regular if there exist some positive integers p, q such that $M^{(p)} \cong R^{(q)}$, where $M^{(p)}$ denotes the direct sum of p copies of M. Following [5], R is called a right-regular-ideal-ring (abbr. right-rir) if every non-zero right ideal of R is regular. We can define similarly a left-rir, and find a right-rir that is not a left-rir (cf. for instance [4]). As is easily seen, a right-rir is a right Noetherian prime ring, a right Artinian right-rir is simple, and if every non-zero right ideal of R is f.g. (finitely generated) free then R is a right principal ideal domain (cf. [5]).

In what follows, R will represent a right-rir. Let M be a regular R-module. Denoting by $\operatorname{dim} M$ and $\operatorname{dim} R$ the respective dimensions of the R-modules M and R in the sense of Goldie [3; Chapter 3], $M^{(p)} \cong R^{(q)}$ implies $p \cdot \operatorname{dim} M=q \cdot \operatorname{dim} R$, which shows that $r(M)=q / p=\operatorname{dim} M / \operatorname{dim} R$ is an invariant of $M . \quad r(M)$ is called the rank of the regular module M. If N is a non-zero submodule of M then, R being right hereditary, N is isomorphic to a finite direct sum of right ideals of R ([1; Theorem I.5.3]). Then, it is easy to see that N is regular. Noting that $\operatorname{dim} M \geqslant \operatorname{dim} N$, we readily obtain $r(M) \geqslant r(N)$. We have proved thus the following which is a sharpening of [5; Corollary to Theorem 2].

Theorem 1. Let R be a right-rir, and M a regular R-module. If N is a non-zero submodule of M then N is regular and $r(N) \leqslant r(M)$. In particular, $r(x) \leqslant 1$ for an arbitrary non-zero right ideal \mathfrak{r} of R.

Now, it is easy to extend the notion of rank to f.g. R-modules. Let M be an arbitrary f.g. R-module. Then, as is well-known, there exists an exact sequence $0 \rightarrow N \rightarrow F \rightarrow M \rightarrow 0$ such that F is f.g. free. (If $N \neq 0$ then N is regular by Theorem 1.) If $0 \rightarrow N^{*} \rightarrow F^{*} \rightarrow M \rightarrow 0$ is another exact sequence and F^{*} is f.g. free, then by Schanuel's theorem we have $F \oplus N^{*} \cong F^{*} \oplus N$, whence it follows $r(F)-r(N)=r\left(F^{*}\right)-r\left(N^{*}\right)(\geqslant 0$ by Theorem 1), where $r(0)=0$ by definition. This means that the number $r(M)=r(F)-r(N)$ is independent of the choice of exact sequences. We shall call $r(M)$ the rank of M and note that for regular modules this agrees with the rank previously defined. To be easily seen, if M has a

