29. A Characterization of Submodules of the Quotient Field of a Domain

By Tokuo IWAMOTO

(Comm. by Kenjiro SHODA, M. J. A., Feb. 12, 1973)

1. Introduction. Let D be an elementary unique factorization domain with identity and K its quotient field. Let P be the set of the prime elements of D, and we consider the set F of the maps f from Pinto $Z \cup \{-\infty\}$ (the set of integers and negative infinity), provided that there exists only a finite number of prime elements p such that f(p) > 0for each map f of F. Let M(f) be the set of the elements $x \in K$ with $V_p(x) \ge f(p)$ for all $p \in P$, where V_p denotes the p-valuation of K. Then we can prove that M(f) is a D-module, which is called an f-module. Now in [2], R. A. Beaumont and H. S. Zuckerman have characterized the additive groups of rational numbers. The purpose of this paper is to extend the results in [2] for an elementary unique factorization domain D and to investigate D-submodules of K related with f-modules.

The author is thankful to Professor K. Murata for his valuable advices.

2. Properties of *f*-modules in an elementary unique factorization domain.

Let *D* be an elementary unique factorization domain (abv. EUFD) with the quotient field *K*, and let *P* be the set of all prime elements. Let *a* be a non-zero element of *D* and $a = \prod_{j=1}^{s} p_{j}^{n_{j}}$ (n_{j} : positive integers) the factorization of *a* into prime factors. We define the valuation of *K* in the following way. We consider the map v_{p} of *D* into non-negative integers: $v_{p}(a) = n_{j}$, $v_{p}(0) = \infty$ for all *p*, and extend v_{p} to *K* as follows: $V_{p}(a) = v_{p}(ac) - v_{p}(c)$, where $0 \neq a \in K$ and $ac \in D$ with $0 \neq c \in D$. It is easy to see that the map V_{p} of *K* into integers does not depend on the choice of *c*, and satisfies the above conditions of the *p*-valuation. If f(p)=0, $f \in F$, for all prime elements *p*, it is easily verified that M(f) = D.

Proposition 2.1. Let D be EUFD with the quotient field K. Then $M(f) \supseteq M(f')$ if and only if $f(p) \le f'(p)$ for each element p of P.

Proof. "If part" is evident. Suppose that $M(f) \supseteq M(f')$, and assume that $f(p_0) > f'(p_0)$ for some element p_0 of P. Let $Q = \{p_{k_1}, \dots, p_{k_r}\}$ be the set of the primes with $f(p_{k_j}) > 0$ or $f'(p_{k_j}) > 0$ $(j=1,\dots,r)$. If p_0 is in Q, we take out it from the set, and if $f'(p_0) = -\infty$, we set $f'(p_0) = -n$ by taking an integer n > 0 such that $f(p_0) > -n$. Let a