29. A Characterization of Submodules of the Quotient Field of a Domain

By Tokuo Iwamoto
(Comm. by Kenjiro Shoda, m. J. A., Feb. 12, 1973)

1. Introduction. Let D be an elementary unique factorization domain with identity and K its quotient field. Let \boldsymbol{P} be the set of the prime elements of D, and we consider the set \boldsymbol{F} of the maps f from \boldsymbol{P} into $Z \cup\{-\infty\}$ (the set of integers and negative infinity), provided that there exists only a finite number of prime elements p such that $f(p)>0$ for each map f of \boldsymbol{F}. Let $M(f)$ be the set of the elements $x \in K$ with $V_{p}(x) \geq f(p)$ for all $p \in \boldsymbol{P}$, where V_{p} denotes the p-valuation of K. Then we can prove that $M(f)$ is a D-module, which is called an f-module. Now in [2], R. A. Beaumont and H. S. Zuckerman have characterized the additive groups of rational numbers. The purpose of this paper is to extend the results in [2] for an elementary unique factorization domain D and to investigate D-submodules of K related with f-modules.

The author is thankful to Professor K. Murata for his valuable advices.
2. Properties of \boldsymbol{f}-modules in an elementary unique factorization domain.

Let D be an elementary unique factorization domain (abv. EUFD) with the quotient field K, and let \boldsymbol{P} be the set of all prime elements. Let a be a non-zero element of D and $a=\Pi_{j=1}^{s} p_{j}^{n_{j}}\left(n_{j}\right.$: positive integers) the factorization of a into prime factors. We define the valuation of K in the following way. We consider the map v_{p} of D into non-negative integers: $v_{p}(\alpha)=n_{j}, v_{p}(0)=\infty$ for all p, and extend v_{p} to K as follows: $V_{p}(a)=v_{p}(a c)-v_{p}(c)$, where $0 \neq a \in K$ and $a c \in D$ with $0 \neq c \in D$. It is easy to see that the map V_{p} of K into integers does not depend on the choice of c, and satisfies the above conditions of the p-valuation. If $f(p)=0, f \in \boldsymbol{F}$, for all prime elements p, it is easily verified that $M(f)$ $=D$.

Proposition 2.1. Let D be EUFD with the quotient field K. Then $M(f) \supseteq M\left(f^{\prime}\right)$ if and only if $f(p) \leq f^{\prime}(p)$ for each element p of \boldsymbol{P}.

Proof. "If part" is evident. Suppose that $M(f) \supseteq M\left(f^{\prime}\right)$, and assume that $f\left(p_{0}\right)>f^{\prime}\left(p_{0}\right)$ for some element p_{0} of \boldsymbol{P}. Let $\boldsymbol{Q}=\left\{p_{k_{1}}, \cdots, p_{k_{r}}\right\}$ be the set of the primes with $f\left(p_{k_{j}}\right)>0$ or $f^{\prime}\left(p_{k_{j}}\right)>0(j=1, \cdots, r)$. If p_{0} is in \boldsymbol{Q}, we take out it from the set, and if $f^{\prime}\left(p_{0}\right)=-\infty$, we set $f^{\prime}\left(p_{0}\right)$ $=-n$ by taking an integer $n>0$ such that $f\left(p_{0}\right)>-n$. Let a

