26. On Some Examples of Non-normal Operators. III

By Masatoshi FUJII

Fuse Senior Highschool, Osaka

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1973)

1. Introduction. In the previous note [3; II], we have introduced the hen-spectra of operators. If T is an operator acting on a Hilbert space \mathcal{S} with the spectrum $\sigma(T)$, then the hen-spectrum $\tilde{\sigma}(T)$ is the complement of the unbounded component of $\sigma(T)^c$ where M^c is the complement of a set M in the complex plane. Clearly, the hen-spectrum is a compact set in the plane with the connected complement, and we have proved in [3; II, Proposition 2].

(1) $\sigma(T) \subset \tilde{\sigma}(T) \subset \operatorname{co} \sigma(T) \subset \overline{W}(T),$

where co M is the convex hull of M, \overline{M} the closure of M, and W(T) is the numerical range of T.

In the previous note [3; II], we are concerned with growth conditions: An operator T is called to satisfy the *condition* (G_1) (resp. (H_1)) if

(2)
$$||(T-\lambda)^{-1}|| \leq \frac{1}{\operatorname{dist}(\lambda, X)}$$

for $\lambda \in X$ and $X = \sigma(T)$ (resp. $X = \tilde{\sigma}(T)$). By (2), we have, $T \in (G_1)$ implies $T \in (H_1)$, and $T \in (H_1)$ implies that T is a convexoid in the sense of Halmos [5], i.e. $\overline{W}(T) = \operatorname{co} \sigma(T)$.

In the present note, we shall concern with spectral sets introduced by von Neumann: A closed set S in the complex plane called a *spectral* set for an operator T if

- $(3) \qquad \qquad \sigma(T) \subset S$
- and
- $\|f(T)\| \leq \|f\|_{\mathcal{S}},$

where f is a rational function with poles off S and

$$\|f\|_{S} = \sup_{z \in S} |f(z)|,$$

cf. [6] for details. If S is a spectral set for T and $S \subset S'$, then S' is also a spectral set for T. A fundamental theorem for spectral set is

Theorem A (von Neumann). The (closed) unit disk D is a spectral set for every contraction.

The following theorem, also due to von Neumann, is a direct consequence of Theorem A:

Theorem B. $\{\alpha; |\alpha-\lambda| \ge \beta\}$ is a spectral set for T if and only if $\|(T-\lambda)^{-1}\| \le 1/\beta$.