19. On the Theorem of Cauchy-Kowalevsky for First Order Linear Differential Equations with Degenerate Principal Symbols

By Toshio Oshima
Department of Mathematics, University of Tokyo

(Comm. by Kôsaku Yosida, m. J. A., Feb. 12, 1973)

Let
(1)

$$
P=\sum_{i=1}^{n} a_{i}(x) \frac{\partial}{\partial x_{i}}+b(x)
$$

be a first order linear differential operator with analytic coefficients defined at the origin of C^{n}. In this note, we discuss the following problem: Consider the differential equation

$$
\begin{equation*}
P u=f . \tag{2}
\end{equation*}
$$

f and u being analytic functions at the origin, what condition should f satisfy for the existence of a local solution u of the equation (2) and how many solutions exist when f satisfies the condition? That is, our problem is to clarify the kernel and cokernel of the operator P. When $n=1$, Komatsu [2] and Malgrange [3] have a deep result for the index of the operator P, which is not necessarily of the first order.

Let \mathcal{O} be the stalk at the origin of the sheaf of holomorphic functions over C^{n}. Let \mathfrak{U} and \mathfrak{B} be the ideals of \mathcal{O} generated by $a_{1}(x), \cdots, a_{n}(x)$ and $a_{1}(x), \cdots, a_{n}(x), b(x)$ respectively. In the case when \mathfrak{H} is equal to \mathcal{O}, the answer to this problem is well-known as the theorem of Cauchy-Kowalevsky. In this note, therefore, we assume that \mathfrak{N} is a proper ideal of \mathcal{O}. Such equations are used by Hadamard [1] to construct the elementary solution of a second order linear partial differential equation and by Sato-Kawai-Kashiwara [4] to determine the structure of pseudo-differential equations. We want to have general theory about the equation of such type. First we give the following conditions to formulate a theorem. We discuss examples which do not satisfy these conditions later.
(A) $\quad \mathfrak{Q}$ is a proper and simple ideal of \mathcal{O}.

Let $M=\left(\partial\left(a_{1}, \cdots, a_{n}\right) / \partial\left(x_{1}, \cdots, x_{n}\right)\right)(0)$ be the Jacobian matrix of a_{1}, \cdots, a_{n} at the origin. Let $M^{*}=J_{1} \oplus \cdots \oplus J_{m} \oplus J_{1}^{\prime} \oplus \cdots \oplus J_{m^{\prime}}^{\prime}$ be the Jordan canonical matrix of M, where $J_{i}(1 \leqslant i \leqslant m)$ and $J_{j}^{\prime}\left(1 \leqslant j \leqslant m^{\prime}\right)$ are the matrices of the Jordan blocks of sizes N_{i} and N_{j}^{\prime} with eigenvalues $\lambda_{i} \neq 0$ and $\lambda_{j}^{\prime}=0$ respectively.
(B) i) $N_{j}^{\prime}=1\left(1 \leqslant j \leqslant m^{\prime}\right)$.

