37. On the Logarithm of Closed Linear Operators

By Atsushi Yoshikawa*)
Department of Mathematics, Hokkaido University
(Comm. by Kôsaku Yosida, M. J. A., March 12, 1973)

For a non-negative operator A in a Banach space X, Nollau [3] gave a definition of its logarithm $\log A$. In this note, we present another definition of $\log A$. Formally our definition is based on the relation

$$\log A = \log A(\mu + A)^{-1} - \log (\mu + A)^{-1}, \quad \mu > 0.$$

It is important here that $\log (\mu + A)^{-1}$ (resp. $\log A(\mu + A)^{-1}$) is to be defined as the infinitesimal generator of a holomorphic semi-group $(\mu + A)^{-\alpha}$, $\alpha \ge 0$, (resp. $A^{\alpha}(\mu + A)^{-\alpha}$) under suitable conditions on A. Using this relation, we derive several formal properties of $\log A$, of which some seem to be new. By means of these properties, we finally give another proof of one of Nollau's representation formulas for $\log A$. The original proof was done through Dunford's integral and Nollau relied on this formula for the derivation of formal properties of $\log A$.

1. Definition and formal properties. We only consider a densely ranged and densely defined non-negative operator A in a Banach space X. Namely, all positive reals are contained in the resolvent set $\mathbf{P}(-A)$ of -A;

(1.1)
$$||r(r+A)^{-1}|| \leq M, \quad r > 0;$$

$$(1.2) \overline{D(A)} = X;$$

$$(1.3) \overline{R(A)} = X.$$

Here D(T), R(T) stand for the domain and the range of an operator T, respectively. \overline{Y} is the closure of the set Y in X.

For A with (1.1), (1.2), (1.3), the following assertion is well-known (Komatsu [1, 2], cf. Yosida [4]).

Proposition 1.1. For any positive μ , $\{(\mu+A)^{-\alpha}; \alpha \geq 0\}$, $\{A^{\alpha}(\mu+A)^{-\alpha}; \alpha \geq 0\}$ are strongly continuous semi-groups of bounded linear operators. Both semi-groups are analytically continued to the half plane $\text{Re }\alpha > 0$.

We also note the following relation (cf. Komatsu [2]):

(1.4)
$$A^{\alpha}(\mu+A)^{-\alpha} = \mu^{-\alpha}(A^{-1}+\mu^{-1})^{-\alpha}.$$

We denote by $\Lambda^+(\mu; A)$ (resp. $\Lambda^-(\mu; A)$) the infinitesimal generator of $(\mu+A)^{-\alpha}$ (resp. $A^{\alpha}(\mu+A)^{-\alpha}$). We set $D^{\pm}(\mu; A) = D(\Lambda^{\pm}(\mu; A))$. We sometimes write $\Lambda^{\pm}(\mu)$, $D^{\pm}(\mu)$ instead of $\Lambda^{\pm}(\mu; A)$, $D^{\pm}(\mu; A)$.

^{*} Partly supported by the Sakkokai Foundation.