34. Continuity of the Map $S \rightarrow|S|$ for Linear Operators*)

By Tosio Kato
Department of Mathematics, University of California, Berkeley, California, U.S.A.
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1973)

This note is concerned with the continuity of the map |.| from $B\left(H, H^{\prime}\right)$ to $B_{s a}(H)$ given by $|S|=\left(S^{*} S\right)^{1 / 2}$; here $B\left(H, H^{\prime}\right)$ denotes the set of all bounded linear operators on a Hilbert space H to another Hilbert space H^{\prime}, and $B_{s a}(H)$ the set of all bounded selfadjoint operators in H. We shall prove the following results.
I. The map $|\cdot|$ is almost Lipschitz-continuous, in the sense that

$$
\||S|-|T|\| \leq \frac{2}{\pi}\|S-T\|\left(2+\log \frac{\|S\|+\|T\|}{\|S-T\|}\right)
$$

where $\|\cdot\|$ denotes the operator norm.
II. If both H and H^{\prime} are infinite-dimensional, the map $|\cdot|$ is not Lipschitz-continuous in the operator norm, even when $H^{\prime}=H$ and $|\cdot|$ is restricted on $B_{s a}(H)$.
III. For each integer $n \geq 1$, there is a holomorphic family of operators $S(t) \in B_{s a}(H),-1<t<1$, where H is a finite-dimensional Hilbert space, with the following properties. (i) $0<|S(t)|<2 I$, (ii) $\|d S(t) / d t\|<1$, and (iii) $\left\|[d|S(t)| / d t]_{t=0}\right\|>n^{2}$. Note that $|S(\cdot)|$ is also holomorphic.
IV. There exists a family $T(t),-1<t<1$, of selfadjoint operators in a separable Hilbert space H such that $T(t)^{-1}$ exists as a bounded operator, $T(t)^{-1}$ is norm-continuously differentiable in $t \in(-1,1)$, but $\left|T(t)^{-1}\right|$ is not weakly differentiable at $t=0$.

Remarks. 1. Propositions I and II answer some questions that appear to have been open, see e.g. Reed and Simon [1, p. 197].
2. In II it suffices to consider the special case mentioned at the end. The result for this special case is, however, a direct consequence of III.
3. IV answers a question raised by Cooper [2].
4. It seems difficult to construct a twice differentiable family $T(t)^{-1}$ with properties similar to those stated in IV. The reason is that $\|A\|$ used in (8) below grows very fast with n. Thus it is not known to the author whether or not the continuous differentiability of $T(t)^{-1}$ can be replaced by a higher order differentiability or even by analyticity.

[^0]
[^0]: *) This work was partly supported by NSF Grant GP-29369X.

