57. An Application of a Certain Argument about Isomorphisms of α-Saturated Structures

By Hiroyoshi TABATA

Nara Technical College

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1973)

Applying A. Robinson's proof of the Completeness Theorem, Y. Nakano [3] recently gave a proof of the theorem of Grätzer [2; p. 138, Theorem 6] on the existence of homomorphisms under certain conditions. But, in the theory of models, there is a well known argument about isomorphisms of α -saturated structures (cf. [1; Chap. 11]). As an application of this argument, we shall give a simplified proof of an extended version of the Grätzer's theorem.

We consider each ordinal number as coinciding with the set of smaller ordinal numbers. We use letters ξ, ζ, ρ to denote ordinal numbers and n, i, k to denote natural numbers. We regard cardinals as being identical with initial ordinals. If X is a set we denote its cardinal by \overline{X} .

Let ρ be an arbitrary ordinal number and let μ be a sequence of natural numbers with domain ρ ($\mu \in \omega^{\rho}$). By a relational structure of type μ we shall mean a sequence $\mathfrak{A} = \langle A, R_{\varepsilon}^{\mathfrak{A}} \rangle_{\varepsilon \in \rho}$ where A, the domain of \mathfrak{A} , is a non-empty set and $R_{\varepsilon}^{\mathfrak{A}}$ is a $\mu(\xi)$ -ary relation on A for each $\xi < \rho$. Throughout our discussion we shall assume that $\mu \in \omega^{\rho}$ is some fixed type, that all relational structures we mention are of this type, that L is the appropriate first order language for structures of this type and that for each ordinal ξ, L_{ε} is the language obtained from Lby adding the ξ -termed sequence of new and distinct constants $\langle c_{\zeta} : \zeta \in \xi \rangle$. For any relational structure $\mathfrak{A} = \langle A, R_{\varepsilon}^{\mathfrak{A}} \rangle_{\varepsilon \in \rho}$ and for any ξ -termed sequence $\vec{a} = \langle a_{\zeta} : \zeta \in \xi \rangle$ of elements of A, we use (\mathfrak{A}, \vec{a}) to denote the structure for L_{ε} obtained from \mathfrak{A} by interpreting each c_{ζ} by a_{ζ} .

Satisfaction of formulas of L_{ε} in a structure for L_{ε} is defined as usual. If θ is a formula whose free variables are among v_0, \dots, v_n and if θ holds in \mathfrak{A} with respect to the elements e_0, \dots, e_n of the domain of \mathfrak{A} , then we write $\mathfrak{A} \models \theta[e_0, \dots, e_n]$.

We use F(L) to designate the set of all formulas of L having at most the one variable v_0 free, and we use $F(L_{\xi})$ to designate the corresponding set of formulas of L_{ξ} .

Suppose Σ is a set of formulas from $F(L_{\varepsilon})$, \mathfrak{A} is a relational structure for L and $\vec{a} \in A^{\varepsilon}$. We say that Σ is simultaneously satisfiable in