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1. Introduction. Let (M, g, J) be a Khlerian manifold with
almost complex structure J and Kiihlerian metric tensor g. By
R-----(R), (R)=(R), and S we denote the Riemannian curvature
tensor, the Ricci curvature tensor, and the scalar curvature, respec-
tively. By dM we denote the volume element of (M, g, J). By z(M)
we denote the Euler-Poincar characteristic of M. By Vol (M) we
denote the total volume of (M, g, J).

Main theorem. Let (M,g,J) be a (real) 4-dimensional compact
Kihlerian manifold. Then the following inequality holds"

(1.1) z(M) >_ 9621I;S2dM-6(2--);[R--(S/4)g][R--(S/4)g]dM1
where is an arbitrary constant < 1. The equality holds if and only

if (M, g, J) is of constant holomorphic sectional curvature.
Furthermore, if (M, g, J) is an Einstein space, then

(1.2) 96z2z(M) >_ S Vol (M)
holds. The equality holds, if and only if (M, g, J) is of constant holo-
morphic sectional curvature.

We give an outline of the proof. First we need to find out in-
equalities concerning (RR), (RR) and S, such that the equality
implies constancy of holomorphic sectional curvature. For this pur-
pose we give a new characterization of the Weyl’s conformal curvature
tensor in 3, and in the next section we give a characterization of the
Bochner curvature tensor. In this process we have the best inequality
(4.14).

2. Preliminaries. Let (M, g) be a Riemannian manifold o di-
mension m. By 7 we denote the Riemannian connection with respect
to g. If R=k(gg--gg) holds on M (at x, resp.) or a real
number k, (M, g) is said to be of constant curvature (at x, resp.). We
put
(2.1) A(g)--RR--(2/(m--1))RR,
(2.2) B(g)--RR --(1/m)S2.
Then A(g)>_O holds; the equality holds on M (at x, resp.) if and only if
(M, g) is of constant curvature (at x, resp.). B(g) >_ 0 holds the equal-
ity on M is equivalent to the fact that (M, g) is an Einstein space (cf.


