55. A Remark on the Normal Expectations. II

By Marie CHODA

Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1973)

1. In the previous note [3], the concept of generalized channels is introduced. In the note [2], it is proved that, for a von Neumann algebra and a von Neumann subalgebra of it, the conjugate mapping of a generalized channel with a certain property is a normal expectation.

In this note, we shall show that a generalized channel is considered a normal expectation.

2. Consider a von Neumann algebra \mathcal{A} , denote the conjugate space of \mathcal{A} as \mathcal{A}^* and the subconjugate space of all ultra-weakly continuous linear functionals on \mathcal{A} as \mathcal{A}_* , following after the definition of Dixmier [4].

Definition (cf. [3]). Let \mathcal{A} and \mathcal{B} be two von Neumann algebras, then a positive linear mapping π of \mathcal{A}_* into \mathcal{B}_* is called a *generalized* channel if π maps a normal state to a normal state.

The following proposition is obtained in [3]:

Proposition 1. A positive linear mapping π of \mathcal{A}_* into \mathcal{B}_* is a generalized channel if and only if the conjugate mapping π^* is a positive normal linear mapping of \mathcal{B} into \mathcal{A} preserving the identity.

In the sequel, according to this proposition, a normal positive linear mapping of a von Neumann algebra into a von Neumann algebra preserving the identity will be called also a generalized channel.

Let \mathcal{A} be a von Neumann algebra and \mathcal{B} a von Neumann subalgebra of \mathcal{A} , then a positive linear mapping e of \mathcal{A} onto \mathcal{B} is called an *expectation* of \mathcal{A} onto \mathcal{B} if e satisfies the following conditions:

(i) $1^{e}=1$, and

(ii) $(BAC)^e = BA^eC$ for all $A \in \mathcal{A}$ and $B, C \in \mathcal{B}$, cf. [5].

The following proposition is proved in [2]:

Proposition 2. Let \mathcal{A} be a von Neumann algebra and \mathcal{B} a von Neumann subalgebra of \mathcal{A} , then a mapping π of \mathcal{B}_* to \mathcal{A}_* is a generalized channel with

(1) $\pi L_B = L_B \pi$ for any $B \in \mathcal{B}$ if and only if the conjugate mapping e of \mathcal{A} onto \mathcal{B} is a normal expectation, where a mapping L_A on \mathcal{A}^* is defined for $A \in \mathcal{A}$ by (2) $L_A f(X) = f(AX)$ for all $f \in \mathcal{A}^*$ and $X \in \mathcal{A}$.

Let $\mathcal{A} \otimes \mathcal{B}$ be the tensor product of von Neumann algebras \mathcal{A} and