55. A Remark on the Normal Expectations. II

By Marie Choda
Department of Mathematics, Osaka Kyoiku University
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1973)

1. In the previous note [3], the concept of generalized channels is introduced. In the note [2], it is proved that, for a von Neumann algebra and a von Neumann subalgebra of it, the conjugate mapping of a generalized channel with a certain property is a normal expectation.

In this note, we shall show that a generalized channel is considered a normal expectation.
2. Consider a von Neumann algebra \mathcal{A}, denote the conjugate space of \mathcal{A} as \dot{A}^{*} and the subconjugate space of all ultra-weakly continuous linear functionals on \mathcal{A} as \mathcal{A}_{*}, following after the definition of Dixmier [4].

Definition (cf. [3]). Let \mathcal{A} and \mathscr{B} be two von Neumann algebras, then a positive linear mapping π of \mathcal{A}_{*} into \mathcal{B}_{*} is called a generalized channel if π maps a normal state to a normal state.

The following proposition is obtained in [3]:
Proposition 1. A positive linear mapping π of \mathcal{A}_{*} into \mathcal{B}_{*} is a generalized channel if and only if the conjugate mapping π^{*} is a positive normal linear mapping of \mathscr{B} into \mathcal{A} preserving the identity.

In the sequel, according to this proposition, a normal positive linear mapping of a von Neumann algebra into a von Neumann algebra preserving the identity will be called also a generalized channel.

Let \mathcal{A} be a von Neumann algebra and \mathscr{B} a von Neumann subalgebra of \mathcal{A}, then a positive linear mapping e of \mathcal{A} onto \mathscr{B} is called an expectation of \mathcal{A} onto \mathscr{B} if e satisfies the following conditions:
(i) $1^{e}=1$, and
(ii) $\quad(B A C)^{e}=B A^{e} C$ for all $A \in \mathcal{A}$ and $B, C \in \mathscr{B}$, cf. [5].

The following proposition is proved in [2]:
Proposition 2. Let \mathcal{A} be a von Neumann algebra and \mathscr{B} a von Neumann subalgebra of \mathcal{A}, then a mapping π of \mathcal{B}_{*} to \mathcal{A}_{*} is a generalized channel with
(1) $\quad \pi L_{B}=L_{B} \pi \quad$ for any $B \in \mathscr{B}$
if and only if the conjugate mapping e of \mathcal{A} onto \mathscr{B} is a normal expectation, where a mapping L_{A} on \mathcal{A}^{*} is defined for $A \in \mathcal{A}$ by
(2) $\quad L_{A} f(X)=f(A X) \quad$ for all $f \in \mathcal{A}^{*}$ and $X \in \mathcal{A}$.

Let $\mathcal{A} \otimes \mathscr{B}$ be the tensor product of von Neumann algebras \mathcal{A} and

