51. On Some Hyperbolic Equations with Operator Coefficients

By Robert Carroll
University of Illinois*)
(Comm. by Kôsaku Yosida, m. J. A., April 12, 1973)

1. We consider first the class of singular Cauchy problems for $u^{m} \in C^{2}(E)$ on $[0, T]$.

$$
\begin{gather*}
u_{t t}^{m}+(2 m+1) \operatorname{coth} t u_{t}^{m}+m(m+1) u^{m}=A^{2} u^{m} \tag{1.1}\\
u^{m}(0)=u_{0} ; \quad u_{t}^{m}(0)=0 \tag{1.2}
\end{gather*}
$$

where $u_{0} \in E$ is given and A is the generator of a locally equicontinuous group $T(t)=\exp A t$ in a complete locally convex Hausdorff space E (cf. [9]). When A^{2} is replaced by the Laplace-Beltrami operator Δ in function spaces E over $M=S L(2, R) / S O(2)$ and $m \geqslant 0$ is an integer, these equations arise in a canonical way from certain Lie group theoretic considerations and are parallel to the corresponding Euler-PoissonDarboux (EPD) equations (cf. [2], [4], [10]) ; in fact there are many parallel theories for canonical classes of singular Cauchy problems but we will only deal here with (1.1)-(1.2) (cf. [5], [10] for other situations).

Now there are two canonical recursion relations arising from the group theory when A^{2} is replaced by Δ which we write in the form

$$
\begin{align*}
& u_{t}^{m}+2 m \operatorname{coth} t u^{m}=2 m \operatorname{csch} t u^{m-1} \tag{1.3}\\
& u_{t}^{m}=\frac{\sinh t}{2(m+1)}\left[A^{2}-m(m+1)\right] u^{m+1} \tag{1.4}
\end{align*}
$$

and (1.3) leads directly to a generalized Sonine formula ($\mathrm{sh}=\sinh$ and $\mathrm{ch}=\cosh$)

$$
\begin{equation*}
\operatorname{sh}^{2 m} t u^{m}(t)=c(m, l) \int_{0}^{t}(\operatorname{ch} t-\operatorname{ch} y)^{l-1} \operatorname{sh}^{2 m-2 l+1} y u^{m-l}(y) d y \tag{1.5}
\end{equation*}
$$

where $c(m, l)=2^{l} \Gamma(m+1) / \Gamma(m-l+1) \Gamma(l)$ and (temporarily) $m \geqslant l \geqslant 1$ are integers. Thus, for example, when $m=l \geqslant 1$ is an integer one connects u^{m} to the mean value solution u^{0} and (1.4)-(1.5) yield a growth theorem $u_{t}^{m} \geqslant 0$ for $m \geqslant 0$ whenevr $[\Delta-m(m+1)] u_{0} \geqslant 0$ (since $\Delta u^{0}\left(t, u_{0}\right)=$ $u^{0}\left(t, \Delta u_{0}\right)$). This and similar convexity theorems (see [2] ; [4]; [10]) are parallel to those of Weinstein [11] for EPD equations with $m \geqslant 0$ arbitrary (cf. also [1], [7], [12]). The Weinstein recursion relations for the EPD theory correspond to a version of (1.4) plus a relation connecting u^{m} to u^{-m} (see remarks after (3.1)) ; a parallel form of a version of (1.3) was also known. The (1.3)-(1.4) analogues were however first systematically exploited together in existence-uniqueness theory for EPD
*) Some of this work was done while the author was visiting at the University of Maryland.

