50. Cauchy Problem for Degenerate Parabolic Equations

By Katsuju Igari
Department of Mathematics, Kyoto University
(Comm. by Kôsaku Yosida, m. J. A., April 12, 1973)

1. Introduction. We consider the Cauchy problem for the equation

$$
\begin{align*}
& \partial_{t} u-\sum_{j, k=1}^{n} \partial_{x_{j}}\left(a_{j k}(x, t) \partial_{x_{k}} u\right)-\sum_{j=1}^{n} b_{j}(x, t) \partial_{x_{j}} u-c(x, t) u \tag{1.1}\\
& \quad=\partial_{t} u-A u=f
\end{align*}
$$

(x, t) in $\boldsymbol{R}^{n} \times[0, \infty)$ with the initial-value

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \tag{1.2}
\end{equation*}
$$

where $a_{j_{k}}(x, t), b_{j}(x, t), c(x, t)$ are real-valued smooth functions. We assume that $\left(a_{j k}\right)_{1 \leq j \leq n, 1 \leq k \leq n}$ is symmetric and satisfies the condition: for any $(x, t) \in \boldsymbol{R}^{n} \times[0, \infty)$

$$
\begin{equation*}
\sum_{j, k=1}^{n} a_{j k}(x, t) \xi_{j} \xi_{k} \geq 0 \quad \text { for all } \xi \in \boldsymbol{R}^{n} \tag{1.3}
\end{equation*}
$$

O. A. Oleǐnik has treated this problem (see [3] and [4]). Her method consists of the following procedure (elliptic regularization): Instead of (1.1), the following equations (depending on a positive parameter ε) in $G=R^{n} \times[0, T]$

$$
\begin{equation*}
\partial_{t} u-\varepsilon \Delta u-A u=f \tag{1.4}
\end{equation*}
$$

are considered. Let u_{s} be the solution of (1.4) with the given initialvalue $u_{0}(x) \in L^{2}\left(\boldsymbol{R}^{n}\right)$ and $f(x, t) \in L^{2}(G)$. Then it is shown that $\left\{u_{s}(x, t)\right\}$ is bounded in $L^{2}(G)$. Then a weak limit of them, as $\varepsilon \rightarrow+0$, gives the desired solution $u(x, t) \in L^{2}(G)$. The uniqueness of the solution is proved. She also proved the smoothness of u, assuming the smoothness of u_{0} and f.

Contrary to the above point of view, we regard (1.1) as evolution equation. More precisely, we want to show the existence of the unique solution $u(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right) \cap \mathcal{E}_{t}^{1}\left(\mathscr{D}_{L^{2}}^{\prime 2}\right)$ of (1.1)-(1.2) for any $f(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right)$ and any initial-value $u_{0}(x) \in L^{2}$.*)

Our approach is based on the semi-group theory. Instead of elliptic regularization, we use Friedrichs' mollifier. Its property (see

[^0]
[^0]: *) Throughout this paper, we use the following notation: $x=\left(x_{1}, \cdots, x_{n}\right)$. ∂_{t} $=\partial / \partial t, \partial_{j}=\partial x_{j}=\partial / \partial x_{j}, \partial_{x}^{\nu}=\partial_{1}^{\nu_{1}} \cdots \partial_{n}^{\nu n}$, where $\nu=\left(\nu_{1}, \cdots, \nu_{n}\right) . L^{2}=L^{2}\left(\boldsymbol{R}^{n}\right) . u(x) \in \mathscr{D}_{L^{2}}^{m}$ means that its derivatives (in the sense of distribution) $\partial_{x}^{\nu} u$ up to order m belong to $L^{2} . \mathscr{D}_{L^{2}}^{\prime m}$ is the dual space of $\mathscr{D}_{L^{2}}^{m}$ and sometimes we denote it by $\mathscr{D}_{L^{2}}^{-m} . \varphi(x) \in \mathscr{G}^{m}$ means that its derivatives $\partial_{x}^{v} \varphi$ up to order m are continuous and bounded in \boldsymbol{R}^{n}. $f(t) \in \mathcal{E}_{t}^{k}\left(\mathscr{D}_{L^{2}}^{m}\left(\right.\right.$ or $\left.\mathscr{B}^{m}\right)$) means that $t \rightarrow t(t) \in \mathscr{D}_{L^{2}}^{m}\left(\right.$ or $\left.\mathscr{B}^{m}\right)$ is continuously differentiable up to order k.

