72. On Banach-Steinhaus Theorem

By Yasujirô NAGAKURA Science University of Tokyo (Comm. by Kinjirô KUNUGI, M. J. A., May 22, 1973)

The theory of ranked space is a new and constructive method of the mathematical analysis, which has been investigated by K. Kunugi since 1954 [1]. We proved the closed graph theorem in ranked spaces with some conditions [4]. And now, in this note we shall prove the Banach-Steinhaus theorem in ranked spaces, whose neighbourhoods need not be open. Throughout this note, g, f, \cdots will denote points of a ranked space, U_i, V_i, \cdots neighbourhoods of the origin with rank $i, \{U_{\tau_i}\}, \{V_{\tau_i}\}, \cdots$ fundamental sequences of neighbourhoods with respect to the origin and $U_i(g), V_i(g), \cdots$ neighbourhoods of the point g with rank i.

Let a linear space E be a complete ranked space with indicator ω_0 , which satisfies the following conditions.

- (E, 1) (1) For any neighbourhood U_i , the origin belongs to U_i .
 - (2) For any U_i and V_j , there is a W_k such that $W_k \subseteq U_i \cap V_j$.
 - (3) For any neighbourhood U_i and for any integer *n*, there is an *m* such that $m \ge n$ and $U_m \subseteq U_i$.
 - (4) The E is the neighbourhood of the origin with rank zero.
- (E,2) The following conditions are the modification of the Washihara's conditions [3].
 - (**R**, L₁) For any $\{U_{r_i}\}$ and $\{V_{r'_i}\}$, there is a $\{W_{r'_i}\}$ such that $U_{r_i} + V_{r'_i} \subseteq W_{r'_i}$.
 - (**R**, L₂)' (1) For any $\{U_{r_i}\}$ and $\lambda > 0$, there is a $\{V_{r_i}\}$ such that $\lambda U_{r_i} \subseteq V_{r_i'}$.

(2) For any $\{U_{r_i}\}$ and $\{\lambda_i\}$ with $\lim \lambda_i = 0$, $\lambda_i > 0$, there is a $\{V_{r_i}\}$ such that $\lambda_i U_{r_i} \subseteq V_{r_i'}$.

- (R, L₃) Let g be any point in E. For any $\{U_{r_i}\}$ there is a $\{V_{r'_i}(g)\}$, which is a fundamental sequence of neighbourhoods with respect to g, such that $g + U_{r_i} \subseteq V_{r'_i}(g)$ and conversely, for any $\{U_{r_i}(g)\}$ there is a $\{V_{r'_i}\}$ such that $U_{r'_i}(g) \subseteq g + V_{r'_i}$.
- (E, 3) For any neighbourhood U_i and for any r > 0, there exists some U_j such that $rU_i \supset U_j$.
- (E, 4) For any neighbourhood $U_i(g)$ with respect to any g and for any $U_j(g)$ with $U_j(g) \subset U_i(g)$ and j > i, if $f \in U_j(g)$ there exists some neighbourhood U_k such that $f + U_k \subset U_i(g)$.