No. 5]

69. Further Results for the Solutions of Certain Third Order Non-autonomous Differential Equations

Ву Міпоги УАМАМОТО

Osaka University

(Comm. by Kenjiro SHODA, M. J. A., May 22, 1973)

1. Introduction. The differential equations considered here are

(1.1) $\ddot{x} + \psi(t, x, \dot{x}, \ddot{x}) + \phi(t, x, \dot{x}) + c(t)f(x) = p(t, x, \dot{x}, \ddot{x})$

(1.2) $\ddot{x} + \psi(t, x, \dot{x}, \ddot{x}) + \phi(t, x, \dot{x}) + c(t)f(x) = 0$

where ψ, ϕ, c, f and p are real valued functions. All solutions of (1.1) considered here are assumed real.

In [4] M. Harrow considered the behavior as $t \rightarrow \infty$ of solutions of the differential equation

(1.3) $\ddot{x} + f(x, \dot{x}, \ddot{x})\ddot{x} + g(x, \dot{x}) + h(x) = p(t).$

In [6] H. O. Tejumola considered the behavior as $t \rightarrow \infty$ of solutions of the differential equation

(1.4) $\ddot{x} + f(t, \dot{x}, \ddot{x})\ddot{x} + g(x, \dot{x}) + h(x) = p(t, x, \dot{x}, \ddot{x}).$

Recently, in [3] T. Hara obtained some conditions under which all solutions of the equation

(1.5) $\ddot{x} + a(t)f(x, \dot{x}, \ddot{x})\ddot{x} + b(t)g(x, \dot{x}) + c(t)h(x) = p(t, x, \dot{x}, \ddot{x})$ tend to zero as $t \to \infty$.

In [7], the author established conditions under which all solutions of the non-autonomous equation (1.1) tend to zero as $t \rightarrow \infty$.

In this note we investigate the asymptotic behavior of the solutions of the equation (1.1) under the condition weaker than that obtained in [3], [4], [6].

Many results have been obtained on the asymptotic properties of autonomous equations of third order and many of these results are summarized in [5].

2. Assumptions and Theorems. We shall state the assumptions on the functions ψ, ϕ, f, c and p appeared in the equation (1.1).

Assumptions.

- (I) f(x) is a C¹-function in R¹, and c(t) is a C¹-function in $I=[0,\infty)$.
- (II) The function $\phi(t, x, y)$ is continuous in $I \times R^2$, and for the function $\phi(t, x, y)$ there exist functions $b(t), \phi_0(x, y)$ and $\phi_1(x, y)$ which satisfy the inequality $b(t)\phi_0(x, y) \leq \phi(t, x, y) \leq b(t)\phi_1(x, y)$ in $I \times R^2$. Moreover b(t) is a C¹-function in I.