67. Generalized Prime Elements in a Compactly Generated I-Semigroup. II

By Kentaro MURATA^{*)} and Derbiau F. HSU^{**)}

(Comm. by Kenjiro SHODA, M. J. A., May 22, 1973)

Let L be a cl-semigroup with the conditions (1), (2), (3), (4) and (*) in [2]. Moreover we impose that the compact generator system Σ of L is closed under multiplication. The main purpose of this note is to define principal φ -components of elements in L by using φ -primes in [2], and to prove that every element of L is decomposed into their principal φ -components.

3. Principal φ -Components.

Let a be an element of L, and u an element of Σ . The (*left*) φ residual a: u of a by u is defined to be the supremum of the set of all elements x with $\varphi(u)\varphi(x) \leq a, x \in \Sigma$. We suppose throughout this note that there is such elements x for any $a \in L$ and any $u \in \Sigma$. For a, b in L, the (*left*) φ -residual a: b of a by b is defined as infimum of the a: u, where u runs over $\Sigma(b)$. Then we can prove the following properties: 1) $a \leq a'$ implies $a: b \leq a': b, b: a \geq b: a'$ and 2) $(\bigcap_{i=1}^{n} a_i): b = \bigcap_{i=1}^{n} (a_i: b)$ for $a, a', a_i, b \in L$.

Now it is not so evident that $a: b \ge a$ for a, b in L. To prove this, it is sufficient to show that $(a: u) \cup a = a: u$ for $a \in L$ and $u \in \Sigma(b)$. Take an arbitrary element x of $\Sigma((a: u) \cup a)$. Then we can choose an element y of $\Sigma(a: u)$ with $x \le y \cup a$. Since $y \le \sup \{x' \in \Sigma | \varphi(u)\varphi(x') \le a\}$, we can find a finite number of compact elements x_1, \dots, x_n such that $y \le \bigcup_{i=1}^n x_i$ and $\varphi(u)\varphi(x_i) \le a$. Then we have $x \le \bigcup_{i=1}^n x_i \cup a \le \bigcup_{i=1}^n \varphi(x_i) \cup a, \varphi(x) \le$ $\bigcup_{i=1}^n \varphi(x_i) \cup a$, and $\varphi(u)\varphi(x) \le \bigcup_{i=1}^n \varphi(u)\varphi(x_i) \cup \varphi(u)a \le a$. Therefore we obtain $(a: u) \cup a \le a, (a: u) \cup a = a$.

(3.1) Definition. Let p be a maximal φ -prime element belonging to an element a of L. The principal φ -component of a by p, denoted by a(p), is the supremum of all a:s,s runs over $\Sigma'(p)$, if $p \neq e$. If p = e, a(p) is defined to be a.

(3.2) Lemma. $a \leq a(p)$ and a(p) is φ -related to a for any maximal φ -prime element p belonging to a.

Proof. If p=e, the assertion is trivial. So we suppose that $p \neq e$. We want to prove that $a(p) \cup a = a(p)$. For the sake of this, take an arbitrary element x of $\Sigma(a(p) \cup a)$. Then since there is an element y

^{*)} Department of Mathematics, Yamaguchi University.

^{**} Department of Mathematics, National Central University, Taiwan.