67. Generalized Prime Elements in a Compactly Generated l-Semigroup. II

By Kentaro Murata*) and Derbiau F. Hsu**)

(Comm. by Kenjiro Shoda, m. J. A., May 22, 1973)

Let L be a $c l$-semigroup with the conditions (1), (2), (3), (4) and (*) in [2]. Moreover we impose that the compact generator system Σ of L is closed under multiplication. The main purpose of this note is to define principal φ-components of elements in L by using φ-primes in [2], and to prove that every element of L is decomposed into their principal φ-components.
3. Principal φ-Components.

Let a be an element of L, and u an element of Σ. The (left) φ residual $a: u$ of a by u is defined to be the supremum of the set of all elements x with $\varphi(u) \varphi(x) \leq a, x \in \Sigma$. We suppose throughout this note that there is such elements x for any $a \in L$ and any $u \in \Sigma$. For a, b in L, the (left) φ-residual $a: b$ of a by b is defined as infimum of the $a: u$, where u runs over $\Sigma(b)$. Then we can prove the following properties: 1) $a \leq a^{\prime}$ implies $a: b \leq a^{\prime}: b, b: a \geq b: a^{\prime}$ and 2) ($\left.\bigcap_{i=1}^{n} a_{i}\right): b=\bigcap_{i=1}^{n}\left(a_{i}: b\right)$ for $a, a^{\prime}, a_{i}, b \in L$.

Now it is not so evident that $a: b \geq a$ for a, b in L. To prove this, it is sufficient to show that ($a: u) \cup a=a: u$ for $a \in L$ and $u \in \Sigma(b)$. Take an arbitrary element x of $\Sigma((a: u) \cup a)$. Then we can choose an element y of $\Sigma(a: u)$ with $x \leq y \cup a$. Since $y \leq \sup \left\{x^{\prime} \in \Sigma \mid \varphi(u) \varphi\left(x^{\prime}\right) \leq a\right\}$, we can find a finite number of compact elements x_{1}, \cdots, x_{n} such that $y \leq \bigcup_{i=1}^{n} x_{i}$ and $\varphi(u) \varphi\left(x_{i}\right) \leq a$. Then we have $x \leq \bigcup_{i=1}^{n} x_{i} \cup a \leq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \cup a, \varphi(x) \leq$ $\bigcup_{i=1}^{n} \varphi\left(x_{i}\right) \cup a$, and $\varphi(u) \varphi(x) \leq \bigcup_{i=1}^{n} \varphi(u) \varphi\left(x_{i}\right) \cup \varphi(u) a \leq a$. Therefore we obtain $(a: u) \cup a \leq a,(a: u) \cup a=a$.
(3.1) Definition. Let p be a maximal φ-prime element belonging to an element a of L. The principal φ-component of a by p, denoted by $a(p)$, is the supremum of all $a: s, s$ runs over $\Sigma^{\prime}(p)$, if $p \neq e$. If $p=e, a(p)$ is defined to be a.
(3.2) Lemma, $a \leq \alpha(p)$ and $a(p)$ is φ-related to a for any maximal φ-prime element p belonging to a.

Proof. If $p=e$, the assertion is trivial. So we suppose that $p \neq e$. We want to prove that $a(p) \cup a=\alpha(p)$. For the sake of this, take an arbitrary element x of $\Sigma(\alpha(p) \cup a)$. Then since there is an element y

[^0]
[^0]: *) Department of Mathematics, Yamaguchi University.
 **) Department of Mathematics, National Central University, Taiwan.

