96. Cyclotomic Algebras over a 2-adic Field

By Toshihiko Yamada
Department of Mathematics, Tokyo Metropolitan University
(Comm. by Kenjiro Shoda, m. J. A., June 12, 1973)

1. Let K be a finite extension of Q_{2}, the rational 2 -adic numbers. E. Witt [5] proved that the order of the Schur subgroup $S(K)$ of the Brauer group $\operatorname{Br}(K)$ is 1 or 2. So, given any finite extension K of Q_{2}, we must tell whether $S(K)=1$ or $S(K)$ is the subgroup of $\operatorname{Br}(K)$ of order 2. This problem was completely settled by the author [3]. The purpose of the present paper is to outline another proof of the result. (The details will appear in the lecture note [4].) The idea of the new proof is the same as the one devised by the author in [1], where for any finite extension K of the rational p-adic numbers Q_{p}, p being any odd prime, the Schur subgroup $S(K)$ was determined.

Notation. For a positive integer n, ζ_{n} is a primitive nth root of unity. Let $L \supset k$ be extensions of Q_{p} such that L / k is normal. Then $G(L / k)$ is the Galois group of L over k. $\quad e_{L / k}$ (resp. $f_{L / k}$) denotes the ramification index (resp. the residue class degree) of L / k.
2. Throughout this paper, k denotes a cyclotomic extension of Q_{2}. Let B be a cyclotomic algebra over k :

$$
\begin{gathered}
B=(\beta, k(\zeta) / k)=\sum_{\sigma \in G} k(\zeta) u_{\sigma} \text { (direct sum), } \quad\left(u_{1}=1\right), \\
u_{\sigma} u_{\tau}=\beta(\sigma, \tau) u_{\sigma \tau}, \quad u_{\sigma} x=x^{\sigma} u_{\sigma} \quad(x \in k(\zeta)),
\end{gathered}
$$

where ζ is a root of unity, $G=G(k(\zeta) / k)$, and β is a factor set of $k(\zeta) / k$ such that the values of β are roots of unity in $k(\zeta)$. Let $L=Q_{2}\left(\zeta^{\prime}\right)$ be a cyclotomic field containing $k(\zeta)$, ζ^{\prime} being some root of unity. Let Inf denote the inflation map from $H^{2}(k(\zeta) / k)$ into $H^{2}(L / k)$. Then $B \sim(\operatorname{Inf}(\beta), L / k)$. Thus we always assume that any cyclotomic algebra B over k is of the form: $B=(\beta, L / k), L$ being a cyclotomic field over Q_{2}. We can write $L=Q_{2}\left(\zeta_{2 n}, \zeta_{r}\right), r=2^{a}-1$, where $a=f_{L / Q_{2}}$ and n is some non-negative integer. If $n \leq 1$, then $B \sim 1$, because the extension L / k is unramified and the factor set β consists of roots of unity. So we assume $n \geq 2$. We have $\left.\beta(\sigma, \tau)=\alpha(\sigma, \tau) \gamma(\sigma, \tau), \alpha(\sigma, \tau) \in\left\langle\zeta_{2}\right\rangle\right\rangle, \gamma(\sigma, \tau) \in\left\langle\zeta_{r}\right\rangle$, for any σ, τ of $G(L / k)$, whence $(\beta, L / k) \sim(\alpha, L / k) \otimes_{k}(\gamma, L / k)$.

Proposition 1 (Witt [5, pp. 242-243]). ($\gamma, L / k) \sim 1$.
Remark. The result can also be proved by the techniques that will be developed in this paper. (See [4].) Another proof was already given in [3].

Thus we only need to study the following type of cyclotomic

