96. Cyclotomic Algebras over a 2-adic Field

By Toshihiko YAMADA

Department of Mathematics, Tokyo Metropolitan University

(Comm. by Kenjiro Shoda, M. J. A., June 12, 1973)

1. Let K be a finite extension of Q_2 , the rational 2-adic numbers. E. Witt [5] proved that the order of the Schur subgroup S(K) of the Brauer group Br(K) is 1 or 2. So, given any finite extension K of Q_2 , we must tell whether S(K)=1 or S(K) is the subgroup of Br(K) of order 2. This problem was completely settled by the author [3]. The purpose of the present paper is to outline another proof of the result. (The details will appear in the lecture note [4].) The idea of the new proof is the same as the one devised by the author in [1], where for any finite extension K of the rational p-adic numbers Q_p , p being any odd prime, the Schur subgroup S(K) was determined.

Notation. For a positive integer n, ζ_n is a primitive nth root of unity. Let $L \supset k$ be extensions of Q_p such that L/k is normal. Then G(L/k) is the Galois group of L over k. $e_{L/k}$ (resp. $f_{L/k}$) denotes the ramification index (resp. the residue class degree) of L/k.

2. Throughout this paper, k denotes a cyclotomic extension of Q_2 . Let B be a *cyclotomic algebra* over k:

$$B = (\beta, k(\zeta)/k) = \sum_{\sigma \in G} k(\zeta) u_{\sigma} \text{ (direct sum)}, \qquad (u_1 = 1),$$

$$u_{\sigma} u_{\tau} = \beta(\sigma, \tau) u_{\sigma\tau}, \quad u_{\sigma} x = x^{\sigma} u_{\sigma} \qquad (x \in k(\zeta)),$$

where ζ is a root of unity, $G = G(k(\zeta)/k)$, and β is a factor set of $k(\zeta)/k$ such that the values of β are roots of unity in $k(\zeta)$. Let $L = Q_{\imath}(\zeta')$ be a cyclotomic field containing $k(\zeta)$, ζ' being some root of unity. Let Inf denote the inflation map from $H^{\imath}(k(\zeta)/k)$ into $H^{\imath}(L/k)$. Then $B \sim (\operatorname{Inf}(\beta), L/k)$. Thus we always assume that any cyclotomic algebra B over k is of the form: $B = (\beta, L/k)$, L being a cyclotomic field over Q_{\imath} . We can write $L = Q_{\imath}(\zeta_{\imath n}, \zeta_r)$, $r = 2^{n} - 1$, where $a = f_{L/Q_{\imath}}$ and n is some non-negative integer. If $n \le 1$, then $B \sim 1$, because the extension L/k is unramified and the factor set β consists of roots of unity. So we assume $n \ge 2$. We have $\beta(\sigma, \tau) = \alpha(\sigma, \tau)\gamma(\sigma, \tau)$, $\alpha(\sigma, \tau) \in \langle \zeta_{\imath n} \rangle$, $\gamma(\sigma, \tau) \in \langle \zeta_r \rangle$, for any σ , τ of G(L/k), whence $(\beta, L/k) \sim (\alpha, L/k) \otimes_k (\gamma, L/k)$.

Proposition 1 (Witt [5, pp. 242–243]). $(\gamma, L/k) \sim 1$.

Remark. The result can also be proved by the techniques that will be developed in this paper. (See [4].) Another proof was already given in [3].

Thus we only need to study the following type of cyclotomic