95. On Strongly Regular Rings

By Katsuo Chiba and Hisao Tominaga
Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, M. J. A., June 12, 1973)

A ring R is called strongly regular if for every element $a \in R$ there exists an element $x \in R$ such that $a=a^{2} x$. As is well-known, R is strongly regular if and only if one of the following equivalent conditions is satisfied:
(A) For every element $a \in R$ there holds $a \in a R$ and there exists a central idempotent e such that $a R=e R$.
(B) R is a regular ring without nonzero nilpotent elements. Obviously, the notion "strongly regular" is right-left symmetric. Next, a ring R is called a right [left] duo ring if every right [left] ideal of R is an ideal. Finally, a ring R is called a right [left] V-ring if $R^{2}=R$ and every right [left] ideal of R is an intersection of maximal right [left] ideals of R.

It is the purpose of this note to prove the following that contains [2; Theorem 2], [5; Theorem] and [7; Theorem 3 and Corollary 1]:

Theorem. The following conditions are equivalent:
(1) R is strongly regular.
(2) R is a regular ring and is a subdirect sum of division rings.
(3) $\mathfrak{l} \cap \mathfrak{x}=\mathfrak{l x}$ for every left ideal \mathfrak{l} and every right ideal \mathfrak{x} of R.
(4) R contains no nonzero nilpotent elements and R / p is regular

(5) R is a regular, right duo ring.
(6) $\mathfrak{r} \cap \mathfrak{r}^{\prime}=\mathfrak{r x}^{\prime}$ for each right ideals $\mathfrak{r}, \mathfrak{r}^{\prime}$ of R.
(7) R is a right duo ring such that every ideal is idempotent.
(8) R is a right duo, right V-ring.
(9) R contains no nonzero nilpotent elements and every completely prime ideal $\sqsubseteq R$ is a maximal right ideal.
(5')-(9'). The left-right analogues of (5)-(9).
In the proof of our theorem, we shall use several familiar results, which are summarized in the next lemma.

Lemma. Let R be a ring without nonzero nilpotent elements, and let a, b be elements of R.
(a) If $a b=0$ then $b a=0$, and so the right annihilator $r(a)$ coincides with the left one $l(a)$.
(b) If a is nonzero then $R / r(a)$ contains no nonzero nilpotent elements and the residue class \bar{a} of $a \bmod r(a)$ is a non-zero-divisor.

