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A ring R is called strongly regular if for every element a € R there
exists an element x ¢ R such that a=a?x. As is well-known, R is
strongly regular if and only if one of the following equivalent condi-
tions is satisfied:

(A) For every element a € R there holds a € aR and there exists a
central idempotent e such that aR=¢R.

(B) R is a regular ring without nonzero nilpotent elements.
Obviously, the notion “strongly regular” is right-left symmetric. Next,
a ring R is called a right [left] duo ring if every right [left] ideal of R
is an ideal. Finally, a ring R is called a right [left] V-ring if R*=R
and every right [left] ideal of R is an intersection of maximal right
[left] ideals of R.

It is the purpose of this note to prove the following that contains
[2; Theorem 2], [6; Theorem] and [7; Theorem 3 and Corollary 11:

Theorem. The following conditions are equivalent :

(1) R s strongly regular.

@) R is a regular ring and is a subdirect sum of division rings.

B) INr=It for every left ideal [ and every right ideal t of R.

(4) R contains no nonzero nilpotent elements and R/p is regular
for every prime ideal YCR.

(5) R is a regular, right duo ring.

®) rNt'=1t for each right ideals t,t’ of R.

(7) R is a right duo ring such that every ideal is idempotent.

(8) R is a right duo, right V-ring.

(9) R contains no nonzero nilpotent elements and every completely
prime ideal SR is a maximal right ideal.

B5)-(9). The left-right analogues of (5)-(9).

In the proof of our theorem, we shall use several familiar results,
which are summarized in the next lemma.

Lemma. Let R be a ring without nonzero nilpotent elements, and
let a,b be elements of R.

(@) Ifab=0then ba=0, and so the right annihilator r(a) cotncides
with the left one Ua).

(b) If a is nonzero them R/r(a) contains mo nonzero nilpotent
elements and the residue class @ of a mod r(a) is a non-zero-divisor.



