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1. The result. Consider a system of linear partial differential
equations

(1.1) 3u(x, t) A(x, t) 3u(x, t) + B(x, t)u(x, t).

Here u--(u,...,u) is an N-vector of unknown functions of x and
t A(x, t) and B(x, t) are N N matrix functions, and A(x, t) are as-
sumed to be Hermitian symmetric.

In order to guarantee the existence and the uniqueness of the solu-
tion u(x, t) e :(L(R)) (HI(Rn)) of (1.1) with Cauchy data u(x, O)
=u0(x) e H(R), we assume the following (see [5], [6])"

(I) (a) The maps tA(.,t) are continuous on (--c,c) to

t-B(., ) is continuous on (--c, c) to _(R) and
B(x, t) e (Rn (-- c, c)), ]-- 1, 2, ..., n.
3x

Here _*(R) is the set of all N N-matrix valued functions A such that
A and DA, Ial<=l are continuous and bounded on R.

We further consider two systems of linear partial differential
equations given by

(1.2) u+(x, t) A u(x’ t) + Bu+(x, t)

where A] are NN constant Hermitian symmetric matrices and B
are N N constant matrices satisfying B + (B)* =0. (F* denotes the
Hermitian conjugate matrix o F.)

We assume that (1.2) are close to (1.1) near Itl=c in the follow-
ing sense.

(II) There exists a function (t) e L( c, c) satisfying
(1.3) IA(x, t)--A?l_(<=(t), IB(x, t)--B+/-l_()<=(t) for tX0.
We define an operator U(t; s) by U(t; S)Uo=U(x,t) where u(x,t)
e (L(Rn))t(H(Rn))is a solution of (1.1) with Cauchy data Uo(X)
e H(R) at time s. We define the operators U(t; s) analogously. By
the energy inequality, expressed in Lemma I and Lemma 2 below, the

1) u(x,t) eS(H(Rn)) means that u(.,t) is a H(Rn) valued function of t,
/-times continuously differentiable with respect to t in H(Rn)-norm.


