88. An Example of Temporally Inhomogeneous Scattering

By Atsushi Inoue
Department of Mathematics, Faculty of Sciences, University of Tokyo (Comm. by Kôsaku Yosida, m. J. A., June 12, 1973)

§ 1. The result. Consider a system of linear partial differential equations

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\sum_{j=1}^{n} A_{j}(x, t) \frac{\partial u(x, t)}{\partial x_{j}}+B(x, t) u(x, t) . \tag{1.1}
\end{equation*}
$$

Here $u=\left(u_{1}, \cdots, u_{N}\right)$ is an N-vector of unknown functions of x and $t ; A_{j}(x, t)$ and $B(x, t)$ are $N \times N$ matrix functions, and $A_{j}(x, t)$ are assumed to be Hermitian symmetric.

In order to guarantee the existence and the uniqueness of the solution $u(x, t) \in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)^{1)}$ of (1.1) with Cauchy data $u(x, 0)$ $=u_{0}(x) \in H^{1}\left(\boldsymbol{R}^{n}\right)$, we assume the following (see [5], [6]):
(I) (a) The maps $t \mapsto A_{j}(\cdot, t)$ are continuous on $(-\infty, \infty)$ to $\mathcal{B}^{1}\left(\boldsymbol{R}^{n}\right)$,
(b) $t \rightarrow B(\cdot, t)$ is continuous on $(-\infty, \infty)$ to $\mathscr{B}^{0}\left(\boldsymbol{R}^{n}\right)$ and

$$
\frac{\partial B(x, t)}{\partial x_{j}} \in \mathscr{B}^{0}\left(\boldsymbol{R}^{n} \times(-\infty, \infty)\right), \quad j=1,2, \cdots, n .
$$

Here $\mathscr{B}^{l}\left(\boldsymbol{R}^{m}\right)$ is the set of all $N \times N$-matrix valued functions A such that A and $D^{\alpha} A,|\alpha| \leqq l$ are continuous and bounded on \boldsymbol{R}^{m}.

We further consider two systems of linear partial differential equations given by

$$
\begin{equation*}
\frac{\partial u^{ \pm}(x, t)}{\partial t}=\sum_{j=1}^{n} A_{j}^{ \pm} \frac{\partial u^{ \pm}(x, t)}{\partial x_{j}}+B^{ \pm} u^{ \pm}(x, t) \tag{1.2}
\end{equation*}
$$

where $A_{j}^{ \pm}$are $N \times N$ constant Hermitian symmetric matrices and $B^{ \pm}$ are $N \times N$ constant matrices satisfying $B^{ \pm}+\left(B^{ \pm}\right)^{*}=0 . \quad\left(F^{*}\right.$ denotes the Hermitian conjugate matrix of F.)

We assume that (1.2) ${ }^{ \pm}$are close to (1.1) near $|t|=\infty$ in the following sense.
(II) There exists a function $\phi(t) \in L^{1}(-\infty, \infty)$ satisfying (1.3) $\quad\left|A_{j}(x, t)-A_{j}^{ \pm}\right|_{\mathcal{B}^{1}\left(\boldsymbol{R}^{n}\right)} \leqq \phi(t), \quad\left|B(x, t)-B^{ \pm}\right|_{\mathcal{B}^{1}\left(\boldsymbol{R}^{n}\right)} \leqq \phi(t) \quad$ for $t \lessgtr 0$. We define an operator $U(t ; s)$ by $U(t ; s) u_{0}=u(x, t)$ where $u(x, t)$ $\in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)$ is a solution of (1.1) with Cauchy data $u_{0}(x)$ $\in H^{1}\left(\boldsymbol{R}^{n}\right)$ at time s. We define the operators $U_{0}^{ \pm}(t ; s)$ analogously. By the energy inequality, expressed in Lemma 1 and Lemma 2 below, the

[^0]
[^0]: 1) $u(x, t) \in \mathcal{E}_{t}^{l}\left(H^{k}\left(\boldsymbol{R}^{n}\right)\right)$ means that $u(\cdot, t)$ is a $H^{k}\left(\boldsymbol{R}^{n}\right)$ valued function of t, l-times continuously differentiable with respect to t in $H^{k}\left(\boldsymbol{R}^{n}\right)$-norm.
