84. On Infinitesimal Automorphisms and Homogeneous Siegel Domains over Circular Cones

By Tadashi TSUJI Nagoya University

(Comm. by Kunihiko KODAIRA, M. J. A., June 12, 1973)

Let D(V, F) be a homogeneous Siegel domain of type I or type II, where V is a convex cone in a real vector space R and F is a Vhermitian form on a complex vector space W. Let C(n) be the *circular* cone of dimension n $(n \ge 3)$, that is, the set $\{(x_1, \dots, x_n) \in \mathbb{R}^n; x_1 > 0, x_1x_2 - x_3^2 -, \dots, -x_n^2 > 0\}$. In this note we will state a result on infinitesimal automorphisms of D(V, F) and a method of constructing all homogeneous Siegel domains over circular cones. As an application, we will give the explicit form of a Siegel domain which is isomorphic to the exceptional bounded symmetric domain in C^{16} (; no explicit description of this Siegel domain has ever been obtained, as far as we know). The detailed results with their complete proofs will appear elsewhere.

1. Let g_h (resp. g_a) denote the Lie algebra of all infinitesimal holomorphic (resp. affine) automorphisms of D(V, F). Let $(z_1, \dots, z_n, w_1, \dots, w_m)$ be a canonical complex coordinate system of $R^c \times W$, where R^c is the complexification of R, $n = \dim_c R^c$, $m = \dim_c W$ and put $\partial = \sum_{1 \le k \le n} z_k \partial / \partial z_k + 1/2 \sum_{1 \le a \le m} w_a \partial / \partial w_a$. Then the following results are known in [5], [10].

(1) $\mathfrak{g}_{h} = \mathfrak{g}_{-1} + \mathfrak{g}_{-1/2} + \mathfrak{g}_{0} + \mathfrak{g}_{1/2} + \mathfrak{g}_{1}$ is a graded Lie algebra and $\mathfrak{g}_{a} = \mathfrak{g}_{-1} + \mathfrak{g}_{-1/2} + \mathfrak{g}_{0}$, where \mathfrak{g}_{λ} ($\lambda = 0, \pm 1/2, \pm 1$) is the λ -eigenspace of ad (∂). Furthermore \mathfrak{g}_{-1} is identified with R as vector spaces.

Considering (1) we denote by ρ the adjoint representation of the subalgebra \mathfrak{g}_0 on $\mathfrak{g}_{-1}=R$, and we know $\rho(\mathfrak{g}_0) \subset \mathfrak{g}(V) \subset \mathfrak{gl}(R)$, where $\mathfrak{g}(V)$ denotes the Lie algebra of Aut $(V) = \{g \in GL(R); g(V) = V\}$. Using the descriptions of $\mathfrak{g}_{1/2}$, \mathfrak{g}_1 in terms of polynomial vector fields [7] and using the structure of the radical of \mathfrak{g}_h [5] and the criterion of irreducibility of D(V, F) [2], we get

Theorem 1. If ρ is irreducible, then g_h is simple or $g_h = g_a$.

A homogeneous Siegel domain D(V, F) of type II is said to be non-degenerate if the linear closure of $\{F(u, u); u \in W\}$ in R coincides with R (cf. [3]).

Remark. Without the assumption of irreducibility of ρ , we can