84. On Infinitesimal Automorphisms and Homogeneous Siegel Domains over Circular Cones

By Tadashi TsuJi

Nagoya University
(Comm. by Kunihiko Kodaira, m. J. A., June 12, 1973)

Let $D(V, F)$ be a homogeneous Siegel domain of type I or type II, where V is a convex cone in a real vector space R and F is a V hermitian form on a complex vector space W. Let $C(n)$ be the circular cone of dimension $n(n \geq 3)$, that is, the set $\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n} ; x_{1}>0\right.$, $\left.x_{1} x_{2}-x_{3}^{2}-, \cdots,-x_{n}^{2}>0\right\}$. In this note we will state a result on infinitesimal automorphisms of $D(V, F)$ and a method of constructing all homogeneous Siegel domains over circular cones. As an application, we will give the explicit form of a Siegel domain which is isomorphic to the exceptional bounded symmetric domain in C^{16} (; no explicit description of this Siegel domain has ever been obtained, as far as we know). The detailed results with their complete proofs will appear elsewhere.

1. Let g_{h} (resp. g_{a}) denote the Lie algebra of all infinitesimal holomorphic (resp. affine) automorphisms of $D(V, F)$. Let (z_{1}, \cdots, z_{n}, w_{1}, \cdots, w_{m}) be a canonical complex coordinate system of $R^{c} \times W$, where R^{c} is the complexification of $R, n=\operatorname{dim}_{C} R^{c}, m=\operatorname{dim}_{C} W$ and put ∂ $=\sum_{1 \leq k \leq n} z_{k} \partial / \partial z_{k}+1 / 2 \sum_{1 \leq \alpha \leq m} w_{\alpha} \partial / \partial w_{\alpha}$. Then the following results are known in [5], [10].
(1) $\mathfrak{g}_{h}=\mathfrak{g}_{-1}+g_{-1 / 2}+g_{0}+g_{1 / 2}+g_{1}$ is a graded Lie algebra and g_{a} $=g_{-1}+g_{-1 / 2}+g_{0}$, where $g_{\lambda}(\lambda=0, \pm 1 / 2, \pm 1)$ is the λ-eigenspace of ad (∂). Furthermore \mathfrak{g}_{-1} is identified with R as vector spaces.

Considering (1) we denote by ρ the adjoint representation of the subalgebra g_{0} on $g_{-1}=R$, and we know $\rho\left(g_{0}\right) \subset \mathfrak{g}(V) \subset \mathfrak{g} \mathfrak{f}(R)$, where $g(V)$ denotes the Lie algebra of Aut $(V)=\{g \in G L(R) ; g(V)=V\}$. Using the descriptions of $g_{1 / 2}, g_{1}$ in terms of polynomial vector fields [7] and using the structure of the radical of g_{h} [5] and the criterion of irreducibility of $D(V, F)$ [2], we get

Theorem 1. If ρ is irreducible, then g_{h} is simple or $\mathrm{g}_{h}=\mathrm{g}_{a}$.
A homogeneous Siegel domain $D(V, F)$ of type II is said to be non-degenerate if the linear closure of $\{F(u, u) ; u \in W\}$ in R coincides with R (cf. [3]).

Remark. Without the assumption of irreducibility of ρ, we can

