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1. In this paper, we shall deal with some geometric properties
concerning with the solution space of non-linear partial differential
equations of elliptic type defined on compact manifolds, by using a
unified method, namely that of the "linearization" of the non-linear
operators.

Throughout the present paper, let M denote a compact C-manifold
of dimension n, and C(M) the linear space of C-functions on M with
the C-topology. Further, let m be an arbitrary non-negative integer.
Then we define a (non-linear) differential operator L of order m on M
as a mapping"

L" C(M)C(M),
which can be expressed, locally, in terms of coordinates, as a C-func
tion in the partial derivatives of order m. To state more precisely, let
x, ..., x denote the local coordinates of M with the coordinate domain
U, then the operator" C(U)C(U)induced by L has the form L(u)

F(x, Du), where F(x, y) is an element of C(U R) (N denotes the
number of multi-indices -(,... ,) with ]--m), and D de-
notes the partial derivative /3x;’.../x.

In our case, the linearizaion (the Gateaux derivative) of L at f
C(M) is given by

dfL(u) lim L(f+ hu) L(f).

If L has the local expression as above, it can be expressed by
F(x, y) .dL(u)-- . (

Hence, dL is a linear differential operator with C-coecients of order
m.

The operator L will be called an elliptic operator (o order m),
for each f C(M) and or each local parameter, the highest order
term of dL


