No. 6]

81. On Deformations of Quintic Surfaces

By Eiji HORIKAWA University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., June 12, 1973)

Let S_0 be a non-singular hypersurface of degree 5 in the projective 3-space P^3 defined over C. For brevity, we call S_0 a non-singular quintic surface.

By a surface, we shall mean a compact complex manifold of complex dimension 2, unless explicit indications are given. We say that a surface S is a deformation of S_0 if there exists a finite sequence of surfaces $S_0, S_1, \dots, S_k, \dots, S_n = S$ such that, for each k, S_k and S_{k-1} belong to one and the same complex analytic family of surfaces.

If S is a deformation of a non-singular quintic surface, S has the following numerical characters:

(*) $p_q=4, q=0, c_1^2=5,$

where p_q , q and c_1^2 denote the geometric genus, the irregularity and the Chern number of S, respectively. In particular S is an algebraic surface (see [5], Theorem 9). Moreover, since S_0 is minimal, Theorem 23 of Kodaira [5] asserts that

(**) S is minimal.

In this note, we shall give a statement of the results on the structures and deformations of surfaces which satisfy the conditions (*) and (**). Details will be published elsewhere.

1. Structures.

Theorem 1. Let S be a minimal algebraic surface with $p_g=4$, q=0, and $c_1^2=5$. Then the canonical system |K| on S has at most one base point. There are two cases:

Case I. |K| has no base point. In this case, there exists a birational holomorphic map $f: S \rightarrow S'$ of S onto a (possibly singular) quintic surface S' in \mathbf{P}^3 . S' has at most rational double points as its singularities.

Case II. |K| has one base point b. Let $\pi: \tilde{S} \rightarrow S$ be the quadric transformation with center at b. Then this case is divided as follows:

Case IIa. There exists a surjective holomorphic map $f: \tilde{S} \rightarrow \mathbf{P}^1 \times \mathbf{P}^1$ of degree 2.

Case IIb. There exists a surjective holomorphic map $f: \hat{S} \to \sum_2 of$ degree 2, where \sum_2 denotes the Hirzebruch surface of degree 2, i.e., \sum_2 is a rational ruled surface with a section Δ_0 with $(\Delta_0)^2 = -2$.

The proof is based on a detailed analysis of the rational map Φ_{κ} :