133. Bounded Variation Property of a Measure

By Masahiro TAKAHASHI

Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1973)

1. Introduction. For an integral structure $\Gamma = (\Lambda; S, \mathcal{G}, Q)$ defined in [3], we shall discuss in this paper a certain type of bounded variation property of a pre-measure $\mu \in Q$. Through the discussion, some properties of the 'indefinite integral' $\sigma(\cdot, f, \mu)$, where σ is an integral with respect to Γ , and a theorem similar to Lebesgue's bounded ed convergence theorem will be obtained.

2. Bounded variation property.

Assumption 1. *M* is a set and *S* is a ring of subsets of *M*. *G* is a topological additive group and μ is a *G*-valued pre-measure on *S*.

Let us denote by \mathbb{CV} the system of neighbourhoods of $0 \in G$.

The pre-measure μ is *locally s-bounded* if, for any $X \in S$ and $X_i \in S$, $i=1, 2, \dots$, such that $X_j X_k = 0$ $(j \neq k)$, and for any $V \in \mathbb{V}$, there exists a positive integer n such that $\mu(XX_i) \in V$ for any $i \ge n$.

Proposition 1. If S is a pseudo- σ -ring and μ is a measure, then μ is locally s-bounded.

Proof. Let X and X_i , $i=1, 2, \cdots$, be elements of S such that $X_j X_k = 0$ $(j \neq k)$ and V an element of CV. Since S is a pseudo- σ -ring, $Y_n = \bigcup_{i=n}^{\infty} XX_i$ is an element of S for each $n=1, 2, \cdots$. Since μ is a measure, it follows from $Y_n \downarrow 0$ $(n \to \infty)$ that $\mu(Y_n) \to 0$ $(n \to \infty)$. Hence, for an element V_0 of CV such that $V_0 - V_0 \subset V$, we have a positive integer n such that $\mu(Y_i) \in V_0$ for any $i \ge n$. For this n and for any $i \ge n$, we have $\mu(XX_i) = \mu(Y_i - Y_{i+1}) = \mu(Y_i) - \mu(Y_{i+1}) \in V_0 \subset V$, which proves the proposition.

For an element V of $\subseteq V$, an element X of S is of V-variation if $\mu(XY) \in V$ for any $Y \in S$.

Then the following is easily seen:

Proposition 2. If an element X of S is of V-variation with $V \in \mathbb{CV}$, then XY is of V-variation for any $Y \in S$.

Proposition 3. Suppose that μ is a locally s-bounded measure and $X_i \downarrow 0 \ (i \rightarrow \infty)$ for $X_i \in S$, $i=1, 2, \cdots$. Then for any $V \in \mathbb{V}$ there exists a positive integer n such that X_n is of V-variation.