133. Bounded Variation Property of a Measure

By Masahiro Takahashi
Institute of Mathematics, College of General Education, Osaka University
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1973)

1. Introduction. For an integral structure $\Gamma=(\Lambda ; \mathcal{S}, \mathcal{G}, Q)$ defined in [3], we shall discuss in this paper a certain type of bounded variation property of a pre-measure $\mu \in Q$. Through the discussion, some properties of the 'indefinite integral' $\sigma(\cdot, f, \mu)$, where σ is an integral with respect to Γ, and a theorem similar to Lebesgue's bounded convergence theorem will be obtained.
2. Bounded variation property.

Assumption 1. M is a set and \mathcal{S} is a ring of subsets of $M . \quad G$ is a topological additive group and μ is a G-valued pre-measure on \mathcal{S}.

Let us denote by $C V$ the system of neighbourhoods of $0 \in G$.
The pre-measure μ is locally s-bounded if, for any $X \in \mathcal{S}$ and $X_{i} \in \mathcal{S}$, $i=1,2, \cdots$, such that $X_{j} X_{k}=0(j \neq k)$, and for any $\left.V \in \subset\right)$, there exists a positive integer n such that $\mu\left(X X_{i}\right) \in V$ for any $i \geqq n$.

Proposition 1. If \mathcal{S} is a pseudo- σ-ring and μ is a measure, then μ is locally s-bounded.

Proof. Let X and $X_{i}, i=1,2, \cdots$, be elements of \mathcal{S} such that $X_{j} X_{k}=0(j \neq k)$ and V an element of $C V$. Since \mathcal{S} is a pseudo- σ-ring, $Y_{n}=\bigcup_{i=n}^{\infty} X X_{i}$ is an element of \mathcal{S} for each $n=1,2, \ldots$. Since μ is a measure, it follows from $Y_{n} \downarrow 0(n \rightarrow \infty)$ that $\mu\left(Y_{n}\right) \rightarrow 0(n \rightarrow \infty)$. Hence, for an element V_{0} of $C V$ such that $V_{0}-V_{0} \subset V$, we have a positive integer n such that $\mu\left(Y_{i}\right) \in V_{0}$ for any $i \geqq n$. For this n and for any $i \geqq n$, we have $\mu\left(X X_{i}\right)=\mu\left(Y_{i}-Y_{i+1}\right)=\mu\left(Y_{i}\right)-\mu\left(Y_{i+1}\right) \in V_{0}-V_{0} \subset V$, which proves the proposition.

For an element V of $C V$, an element X of S is of V-variation if $\mu(X Y) \in V$ for any $Y \in \mathcal{S}$.

Then the following is easily seen:
Proposition 2. If an element X of \mathcal{S} is of V-variation with $V \in C V$, then $X Y$ is of V-variation for any $Y \in \mathcal{S}$.

Proposition 3. Suppose that μ is a locally s-bounded measure and $X_{i} \downarrow 0(i \rightarrow \infty)$ for $X_{i} \in \mathcal{S}, i=1,2, \cdots$. Then for any $V \in Q$ there exists a positive integer n such that X_{n} is of V-variation.

Proof. Let us assume that no X_{i} is of V-variation. Let V_{0} be an element of $C V$ such that $2 V_{0} \subset V$. Put $i_{0}=1$ and assume that a positive integer i_{n-1} is defined. Then we have an element $Y_{i_{n-1}}$ of \mathcal{S} such that $Y_{i_{n-1}} \subset X_{i_{n-1}}$ and $\mu\left(Y_{i_{n-1}}\right) \notin V$. Since $Y_{i_{n-1}} X_{j} \downarrow 0(j \rightarrow \infty)$ implies $\mu\left(Y_{i_{n-1}} X_{j}\right)$

