131. On Normal Approximate Spectrum. VI

By Masatoshi FUJII and Masahiro NAKAMURA Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1973)

1. Introduction. For a unital C^* -algebra \mathfrak{A} , the connectedness of the set $G[\mathfrak{A}]$ of all regular members of \mathfrak{A} is discussed in several occasions: In an early stage, Kakutani observed in [14; pp. 280–281], $G[\mathfrak{A}]$ is connected if \mathfrak{A} is the algebra $\mathfrak{B}(\mathfrak{H})$ of all operators acting on a Hilbert space \mathfrak{H} . Kuiper [13] proved that the homotopy group $\pi_m(G[\mathfrak{A}])$ vanishes for all m if $\mathfrak{A} = \mathfrak{B}(\mathfrak{H})$. Breuer [1] generalized Kuiper's theorem for every semifinite properly infinite factor. However, if \mathfrak{A} is not large, then the situation changes. Kakutani pointed out in [14; p. 294], the set of all regular elements of the algebra $C(S^1)$ of all continuous functions on the unit circle S^1 is not connected: $G[C(S^1)]$ has infinitely many components each of which contains one of

(1) $e_n(s) = e^{2\pi i ns}$ $(n=0, \pm 1, \pm 2, \cdots)$. In the present note, the connectedness of $G[\mathfrak{A}]$ for a general C^* algebra \mathfrak{A} is considered in §2, where some theorems of Cordes and Labrousse [6] are given alternative proofs, and they are combined with a theorem of Royden [15]. In §3, a unital C^* -algebra generated by an operator will be discussed; theorems on the algebraic theory of Fredholm operators, discussed by Breuer-Cordes [2] and Coburn-Lebow [4], are applied, and some elementary properties of the index are proved. In §4, the unital C^* -algebra generated by the unilateral shift is discussed to illustrate these considerations. In §§ 3–4, the normal approximate spectrum of the generator plays a central role.

2. Connectedness. A member A of $G[\mathfrak{A}]$ of a unital C*-algebra \mathfrak{A} is homotopic (in $G[\mathfrak{A}]$) with $B \in G[\mathfrak{A}]$ if there is a continuous way $A_t(0 \leq t \leq 1)$ in $G[\mathfrak{A}]$ with $A_0 = A$ and $A_1 = B$.

The following two theorems are obtained in [6] with somewhat different proofs:

Theorem 1 (Cordes-Labrousse). If $H \in \mathfrak{A}$ is an invertible and positive element, then H is homotopic with 1.

Define

(2) $H_t = t + (1-t)H$ $(0 \le t \le 1)$. Then H_t is positive and invertible by the Gelfand representation (of the unital C*-algebra generated by H). H_t is continuous in t with $H_0 = H$ and $H_1 = 1$; hence H is homotopic with 1.

Theorem 2 (Cordes-Labrousse). If $A \in G[\mathfrak{A}]$ and