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1. Congruences on certain bases of S(F).
We shall denote by F the group SL(2, Z). The set of integral

automorphic orms (cusp orms) of weight k (k being a positive integer)
with respect to F forms a vector space G(F) (S(F)) over the complex
number field C, whose dimension is known to be (cf. [7] p. 48):

[k/12]dim G(F)=
[k/12] +1

{odim S(F)
[k/1.1

(k----2 (mod 12)),
(k2 (mod 12)),
(k=2),
(k2 (mod 12)),
(k :> 2, k-- 2 (mod 12)).

Any element (v) (r e C, Im r>0) of G(F) admits a Fourier expansion
in q= e2"

(r)- (n)qn
--0

we have (r) e S(F) if and only if a(0)=0.
Using Eisenstein series, one can obtain bases of S(F) as follows.

Following the notation in [9], we put
1 (/r+m)- (k=4, 6, 8, ...)E(r)= ,z

(,m) (0,0)

(2zi)

(2ui)B + (2i)

where 5(s) is the Riemann zeta-function, B is the k-th Bernoulli num-
ber and

a(n) tq (g O, 1, 2, 3, ...).
tO

We put further. 2.k E a-(n)q (k 4, 6, 8, ),(1) Er)=l B
so that

E(v)=(k).E(r).
Then the well-known cusp form () of weight 12 under the name of
Ramanujan’s function is written in the form"


