No. 9]

158. A Note on Character Sums

By Akio FUJII

Mathematics Department, Columbia University, New York 10027

(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1973)

§1. Introduction.

This is a continuation of the previous work (cf. [2]). We are concerned with the estimate of $\sum_{n \le x} \chi(n)$, where χ is a primitive character mod q. In [2] we showed

$$|\sum_{n\leq X}\chi(n)|\ll_q\sqrt{X}\,q^{1/6},$$

where \ll_q depends on prime factors of q. Here we will improve the dependence of \ll_q on the prime factors of q. Hereafter implicit constants in \ll are absolute. We will prove

Theorem. Let χ be a primitive character mod q. Then for $X \leq q^{2/3}$. $|\sum_{x} \chi(n)| \ll \sqrt{X} q^{1/6} B(q)$

with

$$\begin{split} B(q) = & \underset{q = q_1 q_2}{\text{Min}} \Big\{ q_1^{1/3} (\log q_1)^{\delta_2} \Big[\Big(\frac{1}{3} \log (q_2 q_1^2) \Big)^{R_2/2} A_2^{1/3} q_1^{1/3} \Big/ \Big(\underset{p_i \mid q_2}{\prod} \log p_i \Big) \\ &+ (\log q_2)^{1/2} A_2^{1/6} \Big(\underset{p_i \mid q_2}{\prod} p_i \Big/ (p_i - 1) \Big)^{1/2} \Big]^{1-\delta_2} \Big\} \end{split}$$

where

1) Min is taken over all decomposition of q into q_1q_2 such that if $q_2 = \prod_{i=1}^{R_2} p_i^{r_i}$, then $p_i^{r_i} || q$ and $r_i > r_0$, where r_0 is 32, say.

2) $A_2 = \prod_{p_i \mid q_2} p_i^{k_i}$, where $K_i = 0, 2, 1$ according as $r_i \equiv 0, 1, 2 \pmod{3}$ and $p_i^{r_i} \mid q_2$.

3)
$$\delta_2 = \begin{cases} 1 & \text{if } q_2 = 1 \\ 0 & \text{if } q \neq 1 \end{cases}$$

§2. Proof of Theorem.

Let $q = q_1 q_2$ and $q_2 = \prod_{i=1}^{R_2} p_i^{r_i}$ with $p_i^{r_i} || q$ and $r_i > r_0$. Let s_i be the least natural number larger than or equal to $r_i/3$. Write $d = \prod_{i=1}^{R_2} p_i^{s_i}$ and $k_i = 0, 2, 1$ according as $r_i \equiv 0, 1, 2 \pmod{3}$. We have by definition $r_i + k_i = 3s_i$. Let $A_2 = \prod_{i=1}^{R_2} p_i^{s_i}$. If $X \le d$, the theorem comes from a trivial estimate. (For $|\sum_{n \le X} \chi(n)| \le \sqrt{X} = \sqrt{X}\sqrt{X} \le \sqrt{X} d^{1/2} = \sqrt{X} q_2^{1/6} A_2^{1/6}$.) Hence we assume $d \le X \le q^{2/3}$. We see that

$$\left|\sum_{n\leq X}\chi(n)\right|\leq \sum_{\mu=0}^{\mu_0}\left|\sum_{N\leq n\leq N'}\chi(n)\right|,$$

where $N=2^{\mu}d$, $N' \leq 2N$, $\mu=0, 1, \dots, \mu_0$ and $2^{\mu_0}d \leq X \leq 2^{\mu_0+1}d$. Hence the problem is reduced to the estimate of the sums of the type $\sum_{N \leq n \leq N'} \chi(n)$ under $d \leq N \leq q^{2/3}$, $N' \leq 2N$.