154. Estimates from $W_{p, \alpha}$ to $W_{q, \beta}$ for the Solutions of the Petrovskii Well Posed Cauchy Problems

By Hitoshi Ishir
Department of Applied Physics, Waseda University, Tokyo
(Comm. by Kinjirô Kunugi, m. J. A., Nov. 12, 1973)

1. Introduction and results.

In this note, we shall consider the Cauchy problem

$$
\begin{cases}\frac{\partial u(t, x)}{\partial t}=P(D) u(t, x) & (t, x) \in(0, \infty) \times R^{n} \tag{1}\\ u(0, x)=u_{0}(x) & x \in R^{n}\end{cases}
$$

Here $P(D)$ is the pseudo-differential operator of order d, that is,

$$
\begin{equation*}
P(D) u=F^{-1}(S \hat{u}), \quad u \in \mathcal{S}^{\prime N}, \tag{2}
\end{equation*}
$$

where $S=\left(s_{i j}\right)_{1 \leqslant i, j \leqslant N}$ is the $N \times N$ matrix of functions $s_{i j}$ in $C^{\infty}\left(R^{n}\right)$ which satisfy, for all multi-indices $\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$,

$$
\begin{equation*}
\left|D^{\sigma} s_{i j}(y)\right| \leqslant C_{\sigma}(1+|y|)^{d-|\sigma|} \tag{3}
\end{equation*}
$$

where C_{o} are constants depending on $\sigma, D^{\sigma}=\left(\partial / \partial y_{1}\right)^{\sigma_{1}} \cdots\left(\partial / \partial y_{n}\right)^{\sigma_{n}}$ and $|\sigma|=\sigma_{1}+\cdots+\sigma_{n}$. The matrix S will be called the symbol of P. In the above, $\mathcal{S}^{\prime N}, F^{-1}$ and \hat{u} denote the space of all N-tuples of distributions in the dual space \mathcal{S}^{\prime} of the Schwartz space \mathcal{S}, the inverse Fourier transformation and the Fourier transform of u, respectively. We assume that the order d of P is positive.

Let $\lambda_{j}(y)$ denote the eigenvalues of $S(y)$ for $j=1,2, \cdots, N$. We say that the Cauchy problem (1) is Petrovskii well posed if

$$
\begin{equation*}
\operatorname{Re} \lambda_{j}(y) \leqslant \Lambda, \quad 1 \leqslant j \leqslant N, y \in R^{n} \tag{4}
\end{equation*}
$$ are valid for some constant Λ. When the Cauchy problem (1) is Petrovskii well posed, we can solve the problem in $\mathcal{S}^{\prime N}$ and the solution can be written as

(5) $u(t)=E(t) u_{0}=F^{-1}\left(\exp (t S) \hat{u}_{0}\right) \quad$ for $u_{0} \in \mathcal{S}^{\prime N}$.

We call the operator $E(t): u_{0} \rightarrow u(t)$ the solution operator.
Let $1 \leqslant p \leqslant \infty$. For $u \in L_{p}^{N}$ (the space of all N-tuples of functions in $L_{p}\left(R^{n}\right)$), we set

$$
\|u\|_{p}= \begin{cases}\left(\int_{R^{n}}|u(x)|^{p} d x\right)^{1 / p} & \text { if } p<\infty \\ \text { ess sup }\left\{|u(x)| ; x \in R^{n}\right\} & \text { otherwise } .\end{cases}
$$

For $\alpha \geqslant 0$, let $v_{\alpha}(y)=\left(1+|y|^{2}\right)^{\alpha / 2}$ and

$$
\|u\|_{p, \alpha}=\left\|F^{-1}\left(v_{\alpha} \hat{u}\right)\right\|_{p} \quad \text { for } u \in L_{p}^{N} .
$$

We define $W_{p, \alpha}^{N}=\left\{u \in L_{p}^{N} ;\|u\|_{p, \alpha}<\infty\right\}$.
Henceforth, for given p and q, we set $\gamma(p, q)=\max (1 / 2-1 / p$, $1 / q-1 / 2,0$). Our results are the following.

