148. On Normalizers of Simple Ring Extensions

By Shigeru TAKAMATSU and Hisao TOMINAGA Department of Mathematics, Okayama University (Comm. by Kenjiro SHODA, M. J. A., Nov. 12, 1973)

Throughout the present note, A will represent an (Artinian) simple ring with the center C, and B a regular subring of A with the center Z. Let V be the centralizer $V_A(B)$ of B in A, and N the normalizer $N_A(B) = \{a \in A : | B\tilde{a} = B\}$ of B in A. As is well-known, $B_0 = BV = B \otimes_Z V$ is two-sided simple. Obviously, $N \subseteq N_A(V)$ and $B \cdot V \cdot$ is a normal subgroup of N. We fix here a complete representative system $\{u_2 | \lambda \in A\}$ of N modulo $B \cdot V \cdot$. As to notations and terminologies used without mention, we follow [2].

In case $A \neq (GF(2))_2$, it is known that if N=A then either B=A or $B\subseteq C$ (see for instance [2; Proposition 8.10 (a)]). In what follows, we shall prove further results concerning N such as P. Van Praag [1] obtained for division ring extensions.

Lemma. The ring $BN = \sum_{u \in N} Bu$ is a completely reducible B-Bmodule with homogeneous components $B_0 u_{\lambda}(\lambda \in \Lambda)$. Furthermore, every irreducible B_0 - B_0 -module $B_0 u_{\lambda}$ is not isomorphic to $B_0 u_{\mu}$ for $\mu \neq \lambda$.

Proof. It is obvious that every $Bu(u \in N)$ is *B*-*B*-irreducible. Now, assume that Bu is *B*-*B*-isomorphic to Bu_{λ} and $u \leftrightarrow bu_{\lambda}(b \in B)$. Since Bb=B, *b* is a unit of *B*. For every $b' \in B$, we have $ub' \leftrightarrow bu_{\lambda}b'=b \cdot b'\tilde{u}_{\lambda} \cdot u_{\lambda}$ and $b'\tilde{u} \cdot u \leftrightarrow b'\tilde{u} \cdot bu_{\lambda}$, and so $b \cdot b'\tilde{u}_{\lambda} = b'\tilde{u} \cdot b$, whence it follows $B|b\tilde{u}_{\lambda} = B|\tilde{u}$. Hence, we obtain $(bu_{\lambda})^{-1}u \in V$, which implies that $u \in B \cdot V \cdot u_{\lambda}$. Conversely, every $Bvu_{\lambda}(v \in V \cdot)$ is *B*-*B*-isomorphic to Bu_{λ} , and hence we have seen that $\bigoplus_{\lambda \in A} B_0 u_{\lambda}$ is the idealistic decomposition of the *B*-*B*module *BN*. Finally, if B_0u_{λ} is B_0 - B_0 -isomorphic to B_0u_{μ} ($\mu \neq \lambda$) then they are *B*-*B*-isomorphic, which yields a contradiction.

Corollary. If $V \subseteq B$ then BN is the direct sum of non-isomorphic irreducible B-B-submodules, and conversely.

Proposition 1. Assume that BN=A.

- (1) $[A:B]_L = [A:B]_R = (N:B\cdot V\cdot)[V:Z].$
- (2) If N' is a subgroup of N containing $B \cdot V \cdot$ then $BN' \cap N = N'$.
- (3) If A' is a simple intermediate ring of A/B_0 then $A'=BN_{A'}(B)$.
- (4) V/C is Galois.

Proof. (1) is clear by Lemma.

(2) By Lemma, $BN' = \bigoplus_{\substack{\lambda \in \Lambda'}} B_0 u_{\lambda}$ with a suitable subset Λ' of Λ .