# 148. On Normalizers of Simple Ring Extensions 

By Shigeru Takamatsu and Hisao Tominaga
Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, m. J. A., Nov. 12, 1973)

Throughout the present note, $A$ will represent an (Artinian) simple ring with the center $C$, and $B$ a regular subring of $A$ with the center $Z$. Let $V$ be the centralizer $V_{A}(B)$ of $B$ in $A$, and $N$ the normalizer $N_{A}(B)=\{a \in A \cdot \mid B \tilde{a}=B\}$ of $B$ in $A$. As is well-known, $B_{0}=B V=B \otimes_{Z} V$ is two-sided simple. Obviously, $N \subseteq N_{A}(V)$ and $B \cdot V \cdot$ is a normal subgroup of $N$. We fix here a complete representative system $\left\{u_{\lambda} \mid \lambda \in \Lambda\right\}$ of $N$ modulo $B \cdot V \cdot$. As to notations and terminologies used without mention, we follow [2].

In case $A \neq(G F(2))_{2}$, it is known that if $N=A \cdot$ then either $B=A$ or $B \subseteq C$ (see for instance [2; Proposition 8.10 (a)]). In what follows, we shall prove further results concerning $N$ such as P. Van Praag [1] obtained for division ring extensions.

Lemma. The ring $B N=\sum_{u \in N} B u$ is a completely reducible $B-B-$ module with homogeneous components $B_{0} u_{\lambda}(\lambda \in \Lambda)$. Furthermore, every irreducible $B_{0}-B_{0}-$ module $B_{0} u_{\lambda}$ is not isomorphic to $B_{0} u_{\mu}$ for $\mu \neq \lambda$.

Proof. It is obvious that every $B u(u \in N)$ is $B$ - $B$-irreducible. Now, assume that $B u$ is $B$ - $B$-isomorphic to $B u_{\lambda}$ and $u \leftrightarrow b u_{\lambda}(b \in B)$. Since $B b=B, b$ is a unit of $B$. For every $b^{\prime} \in B$, we have $u b^{\prime} \leftrightarrow b u_{\lambda} b^{\prime}=b \cdot b^{\prime} \tilde{u}_{\lambda} \cdot u_{\lambda}$ and $b^{\prime} \tilde{u} \cdot u \leftrightarrow b^{\prime} \tilde{u} \cdot b u_{\lambda}$, and so $b \cdot b^{\prime} \tilde{u}_{2}=b^{\prime} \tilde{u} \cdot b$, whence it follows $B\left|b \tilde{u}_{2}=B\right| \tilde{u}$. Hence, we obtain $\left(b u_{\lambda}\right)^{-1} u \in V \cdot$, which implies that $u \in B \cdot V \cdot u_{\lambda}$. Conversely, every $B v u_{\lambda}\left(v \in V^{\cdot}\right)$ is $B$ - $B$-isomorphic to $B u_{\lambda}$, and hence we have seen that $\underset{\lambda \in A}{\oplus} B_{0} u_{\lambda}$ is the idealistic decomposition of the $B-B$ module $B N$. Finally, if $B_{0} u_{\lambda}$ is $B_{0}-B_{0}$-isomorphic to $B_{0} u_{\mu}(\mu \neq \lambda)$ then they are $B-B$-isomorphic, which yields a contradiction.

Corollary. If $V \subseteq B$ then $B N$ is the direct sum of non-isomorphic irreducible $B$-B-submodules, and conversely.

Proposition 1. Assume that $B N=A$.
(1) $[A: B]_{L}=[A: B]_{R}=(N: B \cdot V \cdot)[V: Z]$.
(2) If $N^{\prime}$ is a subgroup of $N$ containing $B \cdot V \cdot$ then $B N^{\prime} \cap N=N^{\prime}$.
(3) If $A^{\prime}$ is a simple intermediate ring of $A / B_{0}$ then $A^{\prime}=B N_{A^{\prime}}(B)$.
(4) $V / C$ is Galois.

Proof. (1) is clear by Lemma.
(2) By Lemma, $B N^{\prime}=\underset{\lambda \in \Lambda^{\prime}}{\oplus} B_{0} u_{2}$ with a suitable subset $\Lambda^{\prime}$ of $\Lambda$.

