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In [6], Nirenberg derived a strong maximum principle for second
order linear parabolic equations. This result was extended by Besala
[2] to nonlinear parabolic equations of the form
(%) ut:f(t’ Ly Uy Ugsy umw),
where vx=(x,,- - -,2,), u,=0ou/ot, u,=0Ou/ox,)r, and u,, = (0*u /0202 ,)} ;1.

On the other hand, Picone [7] and Krzyzanski [4] established a
maximum principle in unbounded domains which was particularly
useful to the study of the Cauchy problem for second order linear
parabolic equations. An extension of this principle to nonlinear equa-
tions of the form (x) was given by Besala [1].

The purpose of this paper is to generalize the above mentioned
results of Besala to the implicit parabolic equation
( 1 ) F(ty Ly Uy Ugy Uy uw:c):O-

Let D be a domain in the (n+41)-dimensional Euclidean space
R™*! of points (t,x). For each fixed point (#°, 2°) e D we define
SH(E°% 29)[S5(% 9] to be the set of all points (¢, x) ¢ D which can be
joined to (£°, «°) by a upward [downward] directed broken line contained
in D, with (#°, ) as initial point and (¢, ) as endpoint.

Consider a function F(t, z, 2z, p, @, R) defined for all (¢,x) e D, z, p,
Q=(q)?, and R=(r4y)?,.,. The function F(¢,x,z,p, @, R) is said to
belong to the class P(D) if there exist positive constants £ and = such
that

(2)  Ft,2,2,0,Q,B)—F(t, 2,2 5,Q B2t 3] (ru—) +(5—D)
for all (t,2) e D, 2,p, p with p<p, Q, and symmetric matrices R=(r;)),
R=(#;) such that R— R is positive semidefinite.

First, we shall prove a strong maximum principle for equation
(1) which extends a recent result of Besala [2].

Theorem 1. Assume that the function F(t,x,z,p, Q,R) belongs
to the class P(K) for any compact subset K of D, and that there exist
positive constants L,, L,, L, and L, such that

IF(t’ r,%2,Dp, Q’ R)—F(t9 Z, 29 17’ Q’ R)’

SLy|2—Z|+ L,|[p—p|+L, ;Wt“qzl-i-llsi;‘:llﬁj—’?m

for all (t,x)e K,2,%2,0,7,Q, Q, R and R.
Let u(t, x) and v(t, x) be continuous and continuously diff erentiable

(3)



