14. On the Asymptotic Behavior of Resolvent Kernels and Spectral Functions for Some Class of Hypoelliptic Operators

By Akira Tsutsumi
College of General Education, Osaka University
(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1974)

1. Introduction. For hypoelliptic operators with constant coefficients studies on asymptotic behavior of their spectral functions were done by Nilsson [10], Gorčakov [6] and Friberg [4] (cf. [15]). For the case of operators with variable coefficients Nilsson [11] has studied this problem for formally hypoelliptic operators and Smagin [12] has done that for some class of hypoelliptic operators for which a complex power can be defined. In this paper we shall anounce some results on that problem and asymptotic distribution of eigenvalues for the case of variable coefficients by a method of pseudo-differential operators (cf. [7], [8]). Let $P=P(x, D)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ be a formally self-adjoint linear partial differential operator with its domain $C_{0}^{\infty}(\Omega)$, where $x=\left(x_{1}, \cdots, x_{n}\right)$ is a point of real n-space $R_{x}^{n}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is a multiindex of which length $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and D^{α} or $D_{x}^{\alpha}=\left(-i \partial / \partial x_{1}\right)^{\alpha_{1}}$ $\cdots\left(-i \partial / \partial x_{n}\right)^{\alpha_{n}}$. The coefficients $a_{\alpha}(x)$ are supposed to be in $\mathcal{B}(\Omega)$ in the notation of L. Schwarz for an open set Ω in R_{x}^{n}. For $\xi \in R^{n}$ we denote $|\xi|=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2},\langle\xi\rangle=1+|\xi|$ and $\xi^{\alpha}=\xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}$. For $P(x, \xi)$ $\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha}$ we set $P_{(\beta)}^{(\alpha)}(x, \xi)=D_{\xi}^{\alpha}\left(i D_{x}\right)^{\beta} P(x, \xi)$.
2. A class of hypoelliptic operators, theorems. We assume the followings on $P(x, \xi)$: this is written in the $\operatorname{sum} P(x, \xi)=p_{0}(x, \xi)+p_{1}(x, \xi)$ and for any $x \in \Omega$ and α and β there exist positive constants $C_{x, \alpha, \beta}, C_{x}$ and A_{x} such that

$$
\begin{gather*}
\left|p_{0(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{x, \alpha, \beta}\left|p_{0}(x, \xi)\right|^{1-\rho|\alpha|+\delta|\beta|} \tag{2.1}\\
\left|p_{1(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{x, \alpha, \beta}\left|p_{0}(x, \xi)\right|^{1-\rho(|\alpha|+1)+\delta(|\beta|+1)} \tag{2.1}
\end{gather*}
$$

for $|\xi| \geq A_{x}$, where ρ and δ are some constants depending only on $P(x, \xi)$ and satisfying $0 \leq \rho<\delta \leq 1 / m$, and

$$
\begin{equation*}
\left|p_{0}(x, \xi)\right| \geq C_{x}|\xi|^{m^{\prime}}, \quad 0<m^{\prime} \leq m \quad \text { for }|\xi| \geq A_{x} \tag{2.2}
\end{equation*}
$$

We remark that (2.3) can be removed by considering a power of $P(x, D)$. We assume further that $C_{x, \alpha, \beta}, C_{x}$ and A_{x} are bounded when x is in a compact subset of Ω. We consider the case in which $p_{0}(x, \xi)$ is taken real because of the self-adjointness of $P(x, D)$, and assume $p_{0}(x, \xi) \rightarrow+\infty$ as $|\xi| \rightarrow \infty$. We have proved in [13] the following:

