7. On a Relation between Characters of Discrete and Non-Unitary Principal Series Representations

By Hisaichi MIDORIKAWA Department of Mathematics, Tsuda College

(Comm. by Kunihiko KODAIRA, M. J. A., Jan. 12, 1974)

§ 1. Introduction. For the general linear group G=SL(2, R), it was proved by I. M. Gelfand and M. I. Graev, N. Ya Vilenkin in [6] that the quotient representation of certain non-unitary principal series representations by its finite dimensional invariant subrepresentation is infinitesimally equivalent to a representation which belongs to the discrete series.

Our purpose is to prove a similar relation for any group G satisfying the following conditions:

(C.1) G is a connected real simple Lie group.

(C.2) There is a simply connected complex simple Lie group G_c which is the complexification of G.

(C.3) The symmetric space G/K is of rank one and G has a compact Cartan subgroup, where K denotes the maximal compact subgroup of G.

In § 3, we prove the relation using the explicit character formulas for the representations in discrete series and in non-unitary principal series obtained by Harish-Chandra ([2], [4], [5]).

In §4, we state some results for G = Spin(2l, 1) $(l \ge 1)$ using Theorem 1.

§ 2. Preliminaries. Let G be a Lie group satisfying conditions C.1, C.2 and C. 3 with Lie algebra g. We shall always denote by \mathfrak{L}_c the complexification of Lie sub-algebra \mathfrak{L} of g. By C.2, \mathfrak{g}_c is the Lie algebra of G_c .

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition and K be the analytic subgroup of G whose Lie algebra is \mathfrak{k} . We shall fix a Cartan subalgebra $\mathfrak{b}(\subset \mathfrak{k})$ of \mathfrak{g} . Let Ω be the non-zero root system of \mathfrak{g}_c with respect to \mathfrak{b}_c . For any root α , we can select a root vector X_α such that $B(X_\alpha, X_{-\alpha})=1$ (Where B is the Killing form of \mathfrak{g}_c). As usual we identify \mathfrak{b}_c with the dual space of \mathfrak{b}_c by the relation $\lambda(H)=B(H,H_\lambda)$ and denote (λ,μ) $=B(H_\lambda,H_\mu)$ for two linear functions λ,μ on \mathfrak{b}_c . Then we have $[X_\alpha, X_{-\alpha}]$ $=H_\alpha$ for any root $\alpha \in \Omega$. For a fixed non-compact root γ , we select a compatible ordering in dual space of RH_γ and $\sqrt{-1}b$ such that $\gamma>0$. Put