7. On a Relation between Characters of Discrete and Non-Unitary Principal Series Representations

By Hisaichi Midorikawa
Department of Mathematics, Tsuda College
(Comm. by Kunihiko Kodaira, m. J. A., Jan. 12, 1974)

§ 1. Introduction. For the general linear group $G=S L(2, R)$, it was proved by I. M. Gelfand and M. I. Graev, N. Ya Vilenkin in [6] that the quotient representation of certain non-unitary principal series representations by its finite dimentional invariant subrepresentation is infinitesimaly equivalent to a representation which belongs to the discrete series.

Our purpose is to prove a similar relation for any group G satisfying the following conditions:
(C.1) G is a connected real simple Lie group.
(C.2) There is a simply connected complex simple Lie group G_{c} which is the complexification of G.
(C.3) The symmetric space G / K is of rank one and G has a compact Cartan subgroup, where K denotes the maximal compact subgroup of G.

In § 3, we prove the relation using the explicit character formulas for the representations in discrete series and in non-unitary principal series obtained by Harish-Chandra ([2], [4], [5]).

In §4, we state some results for $G=\operatorname{Spin}(2 l, 1)(l \geqq 1)$ using Theorem 1 .
§ 2. Preliminaries. Let G be a Lie group satisfying conditions C.1, C. 2 and C. 3 with Lie algebra g. We shall always denote by \mathfrak{R}_{c} the complexification of Lie sub-algebra \mathfrak{R} of g. By C.2, g_{c} is the Lie algebra of G_{c}.

Let $g=\mathfrak{f}+\mathfrak{p}$ be a Cartan decomposition and K be the analytic subgroup of G whose Lie algebra is \mathfrak{f}. We shall fix a Cartan subalgebra $\mathfrak{b}(\subset \mathfrak{f})$ of \mathfrak{g}. Let Ω be the non-zero root system of \mathfrak{g}_{c} with respect to \mathfrak{b}_{c}. For any root α, we can select a root vector X_{α} such that $B\left(X_{\alpha}, X_{-\alpha}\right)=1$ (Where B is the Killing form of g_{c}). As usual we identify \mathfrak{b}_{c} with the dual space of \mathfrak{b}_{c} by the relation $\lambda(H)=B\left(H, H_{\lambda}\right)$ and denote (λ, μ) $=B\left(H_{\lambda}, H_{\mu}\right)$ for two linear functions λ, μ on \mathfrak{b}_{c}. Then we have [$X_{\alpha}, X_{-\alpha}$] $=H_{\alpha}$ for any root $\alpha \in \Omega$. For a fixed non-compact root γ, we select a compatible ordering in dual space of $R H_{r}$ and $\sqrt{-1} b$ such that $\gamma>0$. Put

