2. Eigenfunction Expansions for Symmetric Systems of First Order in the Half-Space R_{+}^{n}

By Seiichiro Wakabayashi
Faculty of Science, Tokyo University of Education
(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1974)

1. Introduction. Eigenfunction expansion theory by distorted plane waves was initiated by T. Ikebe [1] and has been investigated by many authors, for example, Y. Shizuta [9], N. A. Shenk II [8], K. Mochizuki [6], J. R. Schulenberger and C. H. Wilcox [7] and others. T. Ikebe treated the Schrödinger operator $-\Delta+q(x)$ in the whole 3dimensional Euclidean space \boldsymbol{R}^{3}. Y. Shizuta treated $-\Delta$ in an exterior domain of \boldsymbol{R}^{3} and N. A. Shenk II generalized the result to the higher dimensional case (see also T. Ikebe [2]). K. Mochizuki treated symmetric systems in an exterior domain of \boldsymbol{R}^{n} and J. R. Schulenberger and C. H. Wilcox in the whole space \boldsymbol{R}^{n}. An other approach to spectral representations for the operators associated with the wave equation and symmetric hyperbolic systems in an exterior domain of R^{n} is developed by P. D. Lax and R. S. Phillips [3]. In this note we consider stationary problems for symmetric hyperbolic systems with constant coefficients in the half-space \boldsymbol{R}_{+}^{n} and give an expansion theorem by the improper eigenfunctions for such a problem. We note that this problem cannot be regarded as a perturbation of the whole space problem. In fact, our theory is a generalization of the sine and cosine transformations in the L^{2} space on the positive half-line which are eigenfunction expansions for $-\frac{d^{2}}{d x^{2}}$ with Dirichlet or Neumann conditions.

The author would like to express his hearty thanks to Professor M. Matsumura for many valuable suggestions and helpful discussions.
2. Assumptions. We denote the n-dimensional Euclidean space by \boldsymbol{R}^{n} and its point by $x=\left(x_{1}, \cdots, x_{n}\right)$. We also denote a point in \boldsymbol{R}^{n-1} by $x^{\prime}=\left(x_{1}, \cdots, x_{n-1}\right)$ and the set $\left\{x \in \boldsymbol{R}^{n} ; x_{n}>0\right\}$ by \boldsymbol{R}_{+}^{n}. Let L be a first order symmetric hyperbolic operator with constant coefficients:

$$
\begin{equation*}
L=I \frac{\partial}{\partial t}-\sum_{j=1}^{n} A_{j} \frac{\partial}{\partial x_{j}}, \tag{1}
\end{equation*}
$$

where I is the identity matrix of order N and the A_{j} are $N \times N$ constant Hermitian matrices. We consider the mixed initial and boundary value problem in \boldsymbol{R}_{+}^{n} for L :

