32. On Certain L^{2}-well Posed Mixed Problems for Hyperbolic System of First Order

By Taira Shirota
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1974)

1. Introduction and Theorem. Let P be a x_{0}-strictly hyperbolic $2 p \times 2 p$-system of differential operators of first order defined over a C^{∞}-cylinder $R^{1} \times \Omega \subset R^{n+1}$. Let B be a $p \times 2 p$-system of functions defined on the boundary Γ of $R^{1} \times \Omega$. We consider the following mixed problems under certain conditions:

$$
\begin{array}{lll}
P(x, D) u=f & x \in R^{1} \times \Omega & \left(x_{0}>0\right) \\
B(x) u=g & x \in \Gamma & \left(x_{0}>0\right), \\
u=h & \text { on } x_{0}=0 &
\end{array}
$$

where $\sqrt{-1} D=\left(\frac{\partial}{\partial x_{0}}, \frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)$.
For the sake of simplicity of descriptions, we may only consider the case where $\Omega=\left\{x_{n}>0\right\}$, by the localization process. Then our assumptions are the following:
(I) α) The coefficients of P and B are real, belong to $C^{\infty}\left(R^{1} \times \bar{\Omega}\right)$ and constant outside some compact set of $R^{1} \times \bar{\Omega}$.
β) For P, it satisfies the \# condition with respect to Γ and for fixed real (x, τ, σ) there is at most one real double root λ of $|P|(x, \tau, \sigma, \lambda)$ $=0$ where $x \in \Gamma$. Furthermore it is non-characteristic with respect to Γ and it is normal, i.e.

$$
|P|(x, 0, \sigma, \lambda) \neq 0
$$

for any real $(\sigma, \lambda) \neq 0$.
γ) The p row-vectors of $B(x)$ are linearly independent, where $x \in \Gamma$.
(II) α) If the Lopatinsky determinant $R\left(x_{0}, \tau_{0}, \sigma_{0}\right)=0$ for a real point $\left(x_{0}, \tau_{0}, \sigma_{0}\right)$ such that there are no real double roots λ of $|P|\left(x_{0}, \tau_{0}, \sigma_{0}, \lambda\right)=0$, then

$$
\left|R\left(x_{0}, \tau_{0}-i \gamma, \sigma_{0}\right)\right| \geq 0\left(\gamma^{1}\right) \quad(\gamma>0)
$$

Furthermore if there is at least one real simple root $\lambda\left(x_{0}, \tau_{0}, \sigma_{0}\right)$, the zero set of $R(x, \tau \pm i \gamma, \sigma)$ in some neighborhood $U\left(x_{0}, \tau_{0}, \sigma_{0}\right)$ is in the set $\{\gamma=0\}$.
β If $R\left(x_{0}, \tau_{0}, \sigma_{0}\right)=0$ for a real point $\left(x_{0}, \tau_{0}, \sigma_{0}\right)$ such that there are real double roots λ of $|P|\left(x_{0}, \tau_{0}, \sigma_{0}, \lambda\right)=0$, then

$$
\left|R\left(x_{0}, \tau_{0}-i \gamma, \sigma_{0}\right)\right| \geq 0\left(\gamma^{1 / 2}\right) \quad(\gamma>0)
$$

Furthermore if there is at least one real simple root λ, the rank of the

