27. Riemannian Manifolds Admitting Some Geodesic

By Tetsunori Kurogi
Fukui University
(Comm. by Kenjiro Shoda, m. J. A., Feb. 12, 1974)

1. Introduction. Let M be a compact Riemannian manifold and f an isometry of M. Then a geodesic α on M is called f-invariant geodesic if $f \alpha=\alpha$. It is not known much about isometry invariant geodesic. In this paper we see what kind of Riemannian manifold admits an isometry invariant geodesic. Our results are following;

Theorem A (K. Grove). Let M be a compact connected, simply connected and oriented Riemannian manifold of odd dimension and f an orientation preserving isometry of M. Then there exists an f-invariant geodesic.

Theorem B. Let M be a compact connected, simply connected and oriented Riemannian manifold of $2 k$-dimension and f an orientation preserving isometry of M. Then there exists an f-invariant geodesic for $k=1$ and also well for $k>1$ if $\lambda_{k}(f)=$ even where $\lambda_{k}(f)$ is the trace of an induced homomorphism $f_{k}: H_{k}(M, Q) \rightarrow H_{k}(M, Q)$ where Q is the field of rational numbers.

Corollary. Let M be a manifold of Theorem B. Then M admits an f-invariant geodesic for any orientation preserving isometry f of M if $H_{k}(M, Q)=0$.

The author wishes to thank the referee for his kindly suggestions.
2. Fixed points of isometry. Let M be a compact manifold and f be an isometry of M. Then the induced homomorphism by f of the i-th homology group of M over coefficient Q is denoted by $f_{i}: H_{i}(M, Q)$ $\rightarrow H_{i}(M, Q)$ and the trace of f_{i} by $\lambda_{i}(f)$.

Lemma 1. Let M be an n-dimensional orientable Riemannian manifold and f an orientation preserving isometry, then we have $\lambda_{i}(f)$ $=\lambda_{n-i}(f)(i=1 \sim n)$.

Proof. We have only to use the Poincaré duality. q.e.d.
Lemma 2. Let M be an odd dimensional orientable Riemannian manifold and f an orientation preserving isometry of M, then f has no isolated fixed points.

Proof. Let x be a fixed point of f and $f_{*}: T_{x}(M) \rightarrow T_{x}(M)$ be an induced homomorphism by f. Then f_{*} is an element of $S O(n)$ and so f_{*} has a following representation with respect to a suitable basis;

